По ту сторону кванта - [54]

Шрифт
Интервал

волна и частица» одновременно. Более того, все тела в природе обладают одновременно и волновыми и корпускулярными свойствами, и свойства эти лишь различные проявления единого корпускулярно-волнового дуализма.

К этой мысли пришли еще в 1924 году Бор, Крамере и Слэтер. В совместной работе они с определенностью заявили, что волновой характер распространения света, с одной стороны, и его поглощение и испускание квантами — с другой являются теми экспериментальными фактами, которые следует положить в основу любой атомной теории и для которых не следует искать каких-либо объяснений.

Непривычное единство свойств «волна — частица» отражено в формулах Планка (Е = hv) и де Бройля (λ = h/m v). Энергия E и масса m — характеристики частицы; частота ν и длина волны λ — признаки волнового процесса. А единственная причина, по которой мы не замечаем этого дуализма в повседневной жизни, — малость постоянной Планка h = 6,62 10>-27 эрг • сек. Даже если это случайное обстоятельство, с ним надо считаться.

Если бы мы жили в мире, где постоянная Планка сравнима с его привычными масштабами, наши представления об этом мире резко отличались бы от нынешних. Например, нам было бы трудно представить себе дома с резкими очертаниями или стоящий спокойно паровоз. Более того, в этом мире вообще не может быть железнодорожных расписаний: в нем нельзя проложить рельсы-траектории, а можно лишь отметить станции отправления и назначения поездов. Конечно, это мир гипотетический, поскольку величину постоянной Планка мы не в состоянии менять по своему произволу — она всегда неизменна и очень мала. Но атомы тоже так малы, что постоянная Планка сравнима с их масштабами. «Для них» этот необычный мир реально существует, и его непривычную логику нам предстоит теперь понять — точно так же, как Гулливеру пришлось привыкать к нравам лилипутов.

СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ГЕЙЗЕНБЕРГА

Предположим, что мы настолько прониклись идеей неделимости свойств «волна — частица», что захотели записать свое достижение на точном языке формул. Эти формулы должны установить соотношение между числами, которые соответствуют понятиям «волна» и «частица». В классической механике эти понятия строго разделены и относятся к совершенно различным явлениям природы. В квантовой механике корпускулярно-волновой дуализм вынуждает нас использовать оба понятия одновременно и применять их к одному и тому же объекту. Этот необходимый шаг не дается даром — мы за него должны платить, и, как оказалось, платить дорого.

Вполне ясно это стало в 1927 году, когда Вернер Гейзенберг догадался, что хотя к атомному объекту одинаково хорошо применимы оба понятия: и «частица» и «волна», однако определить их строго можно только порознь.

В физике слова «определить понятие» означают: «Указать способ измерения величины, которая этому понятию соответствует».

Гейзенберг утверждал: нельзя одновременно, и при этом точно, измерить координату х и импульс р атомного объекта. С учетом формулы де Бройля λ = h/p это означает: нельзя одновременно и в то же время точно определить положение х атомного объекта и длину его волны λ. Следовательно, понятия «волна» и «частица» при одновременном их использовании в атомной физике имеют ограниченный смысл. Более того, Гейзенберг нашел численную меру такого ограничения. Он доказал, что если мы знаем положение х и импульс р атомной частицы с погрешностями δх и δр, то мы не можем уточнять эти значения бесконечно, а лишь до тех пор, пока выполняется неравенство — соотношение неопределенностей:

δх δр ≥ 1/2h.

Этот предел мал, но он существует, и это фундаментально.

Соотношение неопределенностей — строгий закон природы, который никак не связан с несовершенством наших приборов. Оно утверждает: нельзя — принципиально нельзя — определить одновременно и координату и импульс частицы точнее, чем это допускает приведенное неравенство.

Нельзя — точно так же, как нельзя превысить скорость света или достичь абсолютного нуля температур. Нельзя — как нельзя поднять самого себя за волосы или вернуть вчерашний день. И ссылки на всемогущество науки здесь неуместны: сила ее не в том, чтобы нарушать законы природы, а в том, что она способна их открыть, понять и использовать.

Нам кажется это немного странным — мы привыкли к всесилию науки и утверждение «невозможно» исключили из ее лексикона. Замечательно, однако, что высший триумф любой науки достигается именно в моменты установления таких запретов с участием слова «невозможно». Когда сказали: «Невозможно построить вечный двигатель», возникла термодинамика. Как только догадались, что «нельзя превысить скорость света», родилась теория относительности. И лишь после того, как поняли, что различные свойства атомных объектов нельзя измерять одновременно с произвольной точностью, окончательно сформировалась квантовая механика.

При первом знакомстве с соотношением неопределенностей возникает инстинктивное сопротивление: «Этого не может быть!» Гейзенберг объяснил его причину, отбросив еще одну идеализацию классической физики — понятие наблюдения. Он доказал, что в атомной механике его нужно пересмотреть, точно так же как и понятие движения.


Рекомендуем почитать
Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Родники здоровья

В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.