По ту сторону кванта - [38]
Если к ядру гелия добавить еще один протон и один нейтрон, то получится ядро лития с атомным весом 6. Третий электрон лития уже не помещается на первой оболочке и попадает на следующую, с квантовым числом n = 2. Данный факт как раз и соответствует тому, что с лития начинается новый период таблицы Менделеева. На оболочке с n = 2 помещается 2n>2 = 8 электронов (2 электрона на орбите n = 2, l = 0 и 6 электронов на орбитах n = 2, l=1, m = -1, О, 1). Постепенно добавляя к ядру лития протоны и нейтроны, а к его оболочке — электроны, мы таким образом последовательно построим весь второй период — от лития до неона.
Здесь, однако, мы впервые столкнемся с новым явлением. В самом деле, мы точно знаем: для того чтобы получить ядро кислорода, нужно к ядру лития добавить 5 протонов, поскольку заряд ядра лития равен трем, а заряд кислорода — восьми. Но сколько при этом надо добавить нейтронов? Оказывается, что иногда 5, а иногда 7. В соответствии с этим атомный вес кислорода иногда равен 16, а иногда 18. Но что в таком случае мы понимаем под словом «кислород»? Тот кислород, которым мы дышим? Сейчас мы знаем, что это естественная смесь изотопов кислорода с атомными весами 16 и 18, которая однажды образовалась в природе и которую никакими химическими способами разделить нельзя, поскольку химические свойства элементов зависят не от их атомного веса, а лишь от заряда ядра их атомов и от особенностей строения их электронной оболочки. (Только теперь мы можем по-настоящему оценить глубину мысли Менделеева, который к понятию атомного веса относился уважительно, но с большой осторожностью и, располагая элементы в таблице, доверял больше своей интуиции, чем естественному порядку атомных весов.)
Термин изотопы ввел Фредерик Содди в 1912 году. Его буквальный перевод с греческого означает «занимающие одно и то же место» (в таблице Менделеева). Оказалось, что в природе существует по нескольку изотопов каждого элемента, иногда очень много; например, у водорода их три (водород, дейтерий и тритий), а у свинца — десять.
Больше всего изотопов у олова — двадцать шесть. А всего в природе насчитывается около полутора тысяч изотопов различных элементов.
После открытия изотопов стали различать «чистый элемент» и «смешанный».
«Чистый элемент» — это вещество, состоящее только из одного вида атомов: с одинаковым зарядом ядра и одинаковой массой. Чтобы обозначить такой элемент, пишут коротко, например: >8О>16. Это означает: кислород с зарядом 8 и атомным весом 16. «Смешанный элемент», или — что то же — обычный химический элемент, — это естественная смесь «чистых элементов».
С открытием изотопов возникла новая проблема: а как измерять теперь атомные веса? То есть с весом какого элемента их надо теперь сравнивать? Оказалось, что сравнивать их с весом атома водорода уже неудобно, и с 1961 года во всем мире принята углеродная шкала, в которой за единицу атомного веса принята 1/12 веса изотопа углерода >6C>12.
Благодаря работам Фрэнсиса Вильяма Асто-на (1877–1945) и многих других мы умеем теперь измерять атомные веса очень точно. Скажем, атомный вес водорода iHl в углеродной шкале равен 1,00782522.
«Чистый элемент» или «смешанный» — для химии все равно; она их не различает даже с помощью самых тонких методов анализа. Тем более недоступно это для человеческих несовершенных чувств. Но иногда это различие становится для всех видимым, а для многих — гибельным. Оставшиеся после атомной бомбардировки в живых жители Хиросимы и Нагасаки навсегда запомнят разницу между безобидными изотопами урана и изотопом >92U>235, которым была начинена первая атомная бомба.
АТОМЫ И ЛЮДИ
Случайно это или нет, но факт остается фактом: среди ученых, которые установили систему элементов, было много интересных людей.
Роберт Бойль (1627–1691). Это был незаурядный человек. Решающее влияние на него оказала философия Фрэнсиса Бэкона с его учением об опыте как основном мериле истины. Быть может, поэтому он установил один из первых количественных законов в физике, известный теперь как газовый закон Бойля — Мариотта. Любопытно, что по стилю своей работы Бойль ближе к нам, чем к своей эпохе: он не писал статей, а диктовал их секретарю, он не делал сам опытов, а поручал их ассистенту (с которым ему, впрочем, повезло: это был знаменитый впоследствии Роберт Гук).
Бойль был четырнадцатым ребенком и седьмым сыном в богатой семье. С детских лет его мучили камни в почках, которые, быть может, отчасти определили его образ жизни. Бойль не был женат, был глубоко религиозен и, по свидетельству друзей, знавших его в течение сорока лет, никогда не произносил слова «бог» без благоговейной паузы. В течение 16 лет (1661–1677) он был председателем знаменитой Ост-Индской компании и на этом посту больше всего заботился о деятельности миссионеров в колониях. Примерно греть его ученых трудов посвящена теологии. Он самолично финансировал переводы библии на турецкий, арабский, малайский языки и даже на язык американских индейцев.
Но вместе с тем Бойль был одним из основателей Королевского общества и в числе первых его членов.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.