По ту сторону кванта - [33]
ЭЛЕМЕНТЫ И АТОМЫ
Среди ученых своего времени Джон Дальтон очень своеобразная фигура. В начале XIX века уже все уверовали в науку и поняли секрет ее могущества: она имеет дело с числами, а числа не обманут. Поэтому превыше всего в то время ценили искусство ставить точные опыты. Дальтон решительно этим качеством не обладал и потому при жизни подвергался нападкам маститых ученых.
«Его инструменты, сделанные в основном своими руками, не были приспособлены для получения аккуратных результатов, а его манера экспериментирования была небрежной, если не сказать неряшливой», — писал один из его биографов.
По складу ума это был типичный теоретик, как мы себе представляем сейчас эту профессию. Поэтому не следует слишком строго судить неточности измерений в его работах: на их основе он высказал светлые и плодотворные мысли, которые определили развитие химии на ближайшие сто лет. Суть его открытия состоит в том, что он указал экспериментальный путь проверки атомной гипотезы.
Дальтон определил элемент как вещество, состоящее из атомов одного вида. Атомы различных веществ различаются между собой по весу и при всех превращениях вещества остаются неизменными — происходит лишь их перегруппировка. «Мы с таким же успехом можем стараться прибавить новую планету в солнечную систему, как уничтожить или создать атом водорода», — писал Дальтон.
Дальтона начинается современная история атома. Он впервые не только твердо поверил в атомную гипотезу, но стал искать вытекающие из нее и притом наблюдаемые следствия. Ход его рассуждений состоял примерно в следующем.
Допустим, что все элементы состоят из атомов. Тогда, скажем, в 16 г кислорода содержится N атомов кислорода. Теперь допустим, что мы сжигаем в этом кислороде водород. Легко измерить, что для сжигания 16 г кислорода надо затратить 2 г водорода, и в результате мы получим 18 г воды.
Первое предположение, которое приходит в голову стороннику атомной гипотезы, состоит в том, что каждый атом кислорода О соединяется с одним атомом водорода Н и в результате образуется молекула воды НО. Именно так думал и Дальтон.
В дальнейшем Берцелиус доказал, что он немного не прав, а именно: с каждым атомом кислорода соединяются два атома водорода и поэтому формула воды принимает привычный для нас вид: Н>20. Но здесь самое важное идея: с каждым атомом кислорода соединяется целое число атомов водорода. Поэтому если в 16 г кислорода содержится N атомов, то в 2 г водорода — 2 N атомов. А это означает, что один атом кислорода в 16 раз тяжелее атома водорода.
Таким образом, появилась возможность сравнивать между собой вес атомов различных элементов. Появилось понятие — атомный вес — число, которое показывает, во сколько раз вес атома какого-либо элемента тяжелее атома водорода. По определению атомный вес водорода приняли равным единице, и, следовательно, атомный вес кислорода равен 16.
Чем может быть полезно это простое рассуждение? Прежде всего теперь можно измерить атомные веса всех других элементов, изучая их соединения с водородом и кислородом. Например, можно убедиться, что в тех же 16 г кислорода удается сжечь только 16 г серы и получить сернистый газ. Что отсюда следует? Можно, как всегда, предположить простейшее: с каждым атомом серы соединяется один атом кислорода по формуле S + O = SO, и сделать отсюду вывод, что атомный вес серы равен 16. Но если (как мы теперь знаем) горение происходит по формуле S + 0>2 = S0>2, то атомный вес серы следует положить равным 32.
На этом примере мы видим, что сама по себе атомная гипотеза еще не дает способа предсказывать состав химических соединений, однако она не позволяет ошибаться больше чем в целое число раз. Например, мы заранее можем предсказать, что с 32 г серы (в которых содержится N атомов) может соединиться либо N, либо 2N и т. д. атомов водорода, то есть либо 1 г, либо 2 г, но ни в коем случае не 1,35 г водорода. Это утверждение как раз и составляет содержание знаменитого закона кратных отношений:
Веса элементов, входящих в соединение, относятся между собой как целое кратное их атомных весов.
К этим результатам Дальтон пришел в 1804–1805 годах, а в 1808 году вышла его знаменитая книга «Новая система химической философии», открывшая Целую эпоху в науке. Его выводы тут же проверил английский врач и химик Уильям Волластон (тот самый, который впервые обнаружил темные линии в спектре Солнца) и убедился в их справедливости.
Нам сейчас трудно представить ту смутную эпоху, когда отвергали не только атомную гипотезу, но вообще сомневались в том, что химические соединения имеют постоянный состав. Известен знаменитый восьмилетний спор между Прустом и Бертолле, лишь в конце которого Пруст наконец доказал, что независимо от того, как и откуда получено соединение, оно всегда имеет один и тот же неизменный состав. И вода всегда остается водой H>20, упала ли она с неба, взята ли из реки или же получена сжиганием водорода в кислороде.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.