По ту сторону кванта - [30]

Шрифт
Интервал

Нильс Бор всю жизнь провел среди парадоксов квантовой механики, но даже его поразила реальность происходящего: он заплакал от удивления и благодарности.

ВОКРУГ КВАНТА

ОПЫТНОЕ ДОКАЗАТЕЛЬСТВО ПОСТУЛАТОВ БОРА

Опыт Франка и Герца, по существу, очень похож на опыт Кирхгофа и Бунзена, только атомы натрия в нем они заменили атомами ртути, а вместо луча направили на них пучок электронов, энергию которых они могли менять. При этом Франк и Герц наблюдали интересное явление: пока энергия электронов была произвольной — число электронов, прошедших через атомы ртути, было равно числу электронов исходного пучка. Когда же энергия их достигала определенной величины (в опытах она равнялась 4,9 электрон-вольта, или 7,84 10>-12 эрг), число электронов, прошедших ртуть, резко падало — они поглощались атомами ртути. Одновременно с этим в спектре паров ртути вспыхивала яркая фиолетовая линия с длиной волны λ = 2536Ǻ, то есть с частотой ν = 1,18 • 10>15 сек>-1. Энергию кванта с такой частотой легко вычислить — она равна E = hν = 6,62 • 10>-27 • 1,2 • 10>15 = 7,82 • 10>-12 эрг, то есть почти точно равна затраченной энергии электрона. Очевидно, это излучение возникает при обратном переходе атома ртути из возбужденного состояния в основное.

Легко видеть, что наблюдаемая картина — прямое опытное доказательство обоих постулатов Бора: в атоме реально существуют стационарные состояния, и поэтому он не способен поглощать произвольные порции энергии. Переходы электрона между уровнями в атоме возможны только скачками, а частота излучаемых квантов определяется разностью энергии уровней и вычисляется по формуле Эйнштейна ΔЕ = hν. Конечно, «легко видеть» это только сейчас, а в 1913 году даже сами Франк и Герц объяснили свой опыт совсем по-другому.

>Ртуть

«КВАНТОВАНИЕ» СОЛНЕЧНОЙ СИСТЕМЫ

Мы много раз сравнивали атом с солнечной системой, хотя и не придавали глубокого смысла этой аналогии. Тем более неожиданно, что солнечная система, как и атом, тоже подчиняется некоему «правилу квантования». Это правило не имеет ничего общего с квантовой механикой, но тем не менее любопытно, что расстояния планет от Солнца (как и радиусы орбит в атоме) меняются не беспорядочно, а подчиняются довольно строгому закону.

Факт этот был известен Иоганну Кеплеру, и еще в молодости, много размышляя о «гармонии сфер», он пришел к выводу, что в промежутках между сферами, построенными на орбитах планет, можно вписать пять правильных многогранников.

Профессор Даниэль Тициус в 1772 году выпустил в Бонне книгу «Созерцание природы», в которой привел табличку расстояний от Солнца до планет в условных единицах (расстояние до ближайшей к Солнцу планеты Меркурий принято за 4).

Меркурий… 4 = 4;

Венера…… 7 = 4 + 1 3;

Земля……. 10 = 4 + 2 3;

Марс…….. 16 = 4 + 4 3;

Юпитер…… 52 = 4 + 16 3;

Сатурн…… 100 = 4 + 32 3.

Позднее прибавился

Уран……. 196 = 4 + 64-3.

Впоследствии Боде уточнил закон Тициуса, приняв расстояние до Меркурия за 8 условных единиц и записав общую формулу для планетных расстояний в виде: R = 8 + 3 2>n,

где п = 0, 1, 2, 3, 4, 6, 7, 8.

Замечательно, что в приведенной схеме нет планеты с номером n = 5, которая должна была бы помещаться между Марсом и Юпитером. Но как раз в этом месте расположен пояс астероидов — малых планет. По мнению астрономов, это осколки некогда существовавшей большой планеты Фаэтон.

Закон Тициуса и Боде еще до конца не понят, хотя существует несколько его доказательств (одно из них принадлежит советскому ученому Отто Юльевичу Шмидту). По-видимому, полное объяснение закону будет найдено вместе с разгадкой происхождения нашей солнечной системы.

ГЛАВА ПЯТАЯ

Учения древних — Первые попытки — Элементы и атомы — Таблица элементов — Объяснение таблицы

Представьте, что вы решили изучить жизнь клетки. Вы ставите над нею всевозможные опыты: нагреваете, облучаете, разрушаете и тщательно рассматриваете в микроскоп. Однако все ваши знания о ней будут неполны, пока вы не вспомните, что клетка — это часть живого организма и только в нем проявляет всю полноту своих свойств.


>Глава пятая

Нечто похожее произошло и в науке об атоме. До сих пор мы намеренно пытались изолировать атом и отбирали только те опыты, которые могут прояснить свойства отдельного атома. Однако задолго до всех этих опытов, которые доказали сложную структуру атома, Дмитрий Иванович Менделеев (1834–1907) установил, что атомы различных элементов образуют единый организм — естественную систему элементов.

Через год после создания периодической системы элементов он писал:

«Легко предположить, но ныне пока еще нет возможности доказать, что атомы простых тел суть сложные вещества, образованные сложением некоторых еще меньших частей (ультиматов), что называемое нами неделимым (атом) — неделимо только обычными химическими силами… однако, несмотря на шаткость и произвольность такого предположения, к нему невольно склоняется ум при знакомстве с химией. Оттого такое учение повторяется в разных формах уже давно, и выставленная мной периодическая зависимость между свойствами и весом, по-видимому, подтверждает такое предчувствие, если можно так выразиться, столь свойственное химикам».


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.