Первые три минуты - [77]

Шрифт
Интервал

Было нетрудно развить конкретную модель, которая воплощала эти идеи. У меня было мало уверенности в правильности моего понимания сильных взаимодействий, поэтому я решил сконцентрировать свое внимание на лептонах. Существуют два левосторонних лептона электронного типа ν>eL и е>L и один правосторонний лептон электронного типа e>R. Поэтому я начал с группы U(2) × U(1); все унитарные 2 × 2-матрицы действуют на левосторонние лептоны е-типа, тогда как все унитарные 1 × 1-матрицы воздействуют на правосторонний лептон е-типа. Подразделяя U(2) на унимодулярные преобразования и фазовые преобразования, можно было сказать, что группа была SU(2) × U(1) × U(1). Но тогда одна из групп U(1) могла быть соотнесена обычному лептонному числу, а поскольку лептонное число оказывается сохраняющимся и не существует никакой безмассовой векторной частицы, обладающей им, то я решил исключить его из группы. При этом остается лишь четырехпараметрическая группа SU(2) × U(1). Спонтанное нарушение симметрии SU(2) × U(1) до группы U(1) обычной электромагнитной калибровочной инвариантности привело бы к появлению масс у трех из четырех векторных калибровочных бозонов: заряженных бозонов W и нейтрального бозона, который я назвал Z>0. Зная силу обычных слабых взаимодействий заряженных токов, подобных бета-распаду, которые обусловлены обменом W, можно определить массу W. Она оказалась равной около 40 ГэВ/sinΘ, где Θ — угол смешивания γ — Z>0.

Чтобы продвинуться дальше, приходится принять определенную гипотезу о механизме нарушения SU(2) × U(1). В перенормируемой SU(2) × U(1) — теории единственным полем, с помощью которого можно было бы придать электрону массу за счет отличных от нуля вакуумных средних, является SU(2) — дублет частиц (φ>+>0) с нулевым спином. Поэтому для простоты я предположил, что эти поля являются единственными скалярными полями в теории. Масса Z>0-бозона при этом оказалась равной 80 ГэВ/sin2Θ. Таким образом, была зафиксирована сила взаимодействий слабых нейтральных токов. Действительно, точно так, как и в квантовой электродинамике, как только выбрано «меню» полей в теории, все детали такой теории полностью определяются принципами симметрии и перенормируемостью, если задать еще несколько свободных параметров: заряды и массы лептонов, фермиевскую константу связи бета-распада, угол смешивания Θ и массу скалярной частицы. Естественность такой теории хорошо демонстрирует тот факт, что практически такая же теория была независимо развита Саламом [27] в 1968 г.

Следующей проблемой была перенормируемость. Правила Фейнмана для теорий Янга-Миллса с ненарушенными калибровочными симметриями были разработаны [28] де Виттом, Фаддеевым и Поповым и другими, причем было известно, что такие теории перенормируемы. Однако в 1967 г. я еще не знал, как можно доказать, что это свойство перенормируемости не портится при спонтанном нарушении симметрии. Я усиленно работал над этой задачей в течение нескольких лет, частично вместе с моими студентами [29], но продвинулся в решении вопроса не намного. Оглядываясь назад, можно понять, что основная трудность заключалась в том, что при квантовании векторных полей я использовал калибровку, которая известна сейчас под названием унитарной калибровки [30]. Такая калибровка имеет ряд существенных преимуществ, например, она дает истинный спектр частиц в теории, но у нее есть и крупный недостаток, состоящий в том, что свойство перенормируемости в такой калибровке практически невозможно выяснить.

Наконец, в 1971 году 'т Хоофт [31] показал в своей прекрасной статье, как можно разрешить эту проблему. Он придумал калибровку, в которой (наподобие «фейнмановской калибровке» в квантовой электродинамике) правила Фейнмана явно приводили только к конечному числу типов ультрафиолетовых расходимостей. Необходимо было также показать, что эти бесконечности удовлетворяли практически тем же ограничениям, что и лагранжиан теории, так что они могли бы быть устранены путем переопределения параметров этой теории. (Это казалось естественным, но доказательство не было простым, потому что калибровочно инвариантную теорию можно проквантовать лишь после того как выбрана определенная калибровка, так что совсем не очевидно, что ультрафиолетовые расходимости удовлетворяют тем же ограничениям, вытекающим из калибровочной инвариантности, что и сам лагранжиан.) Вскоре доказательство было завершено [32] в работах Ли и Зинн-Жюстена, а также 'т Хоофта и Велтмана. Совсем недавно Бекки, Руэ и Стора [33] придумали изящный метод проведения такого доказательства, использующий глобальную суперсимметрию калибровочных теорий, которая сохраняется даже при выборе какой-либо специфической калибровки.

Мне придется признать, что, когда я впервые увидел статью 'т Хоофта в 1971 г., я не поверил, что им найден путь доказательства перенормируемости. Но это была уже моя беда, а не вина 'т Хоофта: я просто не был достаточно хорошо знаком с формализмом интегралов по траекториям, на котором основывалась работа 'т Хоофта, и мне хотелось увидеть вывод фейнмановских правил в калибровке 'т Хоофта из канонического квантования. Вскоре это было показано (для ограниченного класса калибровочных теорий) в статье Бена Ли [34]. После статьи Ли я уже был готов к восприятию мысли о том, что перенормируемость единой теории практически доказана.


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Объясняя мир. Истоки современной науки

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.