Первые три минуты - [7]

Шрифт
Интервал

Спектр Солнца.

Показан свет Солнца, разложенный с помощью 13-футового спектрогелиографа на различные длины волн. В среднем интенсивность на разных длинах волн примерно такая же, какая излучалась бы любым полностью поглощающим (или «черным») телом при температуре 5800 К. Однако вертикальные темные «фраунгоферовы» линии в спектре указывают на то, что свет по поверхности Солнца поглощается относительно более холодной и частично прозрачной внешней областью, известной под названием обращающего слоя. Каждая темная линия возникает в результате селективного поглощения света на определенной длине волны; чем темнее линия, тем интенсивнее поглощение. Длины волн указаны над спектром в ангстремах (10>-8 см). Установлено, что многие из этих линий обязаны поглощению света определенными элементами, такими, как кальций (Са), железо (Fe), водород (Н), магний (Mg), натрий (Na). Отчасти, с помощью излучения таких линий поглощения, мы можем установить космическую распространенность различных химических элементов. Соответствующие линии поглощения в спектрах далеких галактик наблюдаются сдвинутыми от их нормального положения в сторону больших длин волн; именно из этого красного смещения мы делаем вывод о расширении Вселенной (фотография Хейльской обсерватории).


Доплер думал, что его эффект может объяснить разный цвет звезд. Свет от звезд, которые удаляются от Земли, был бы сдвинут в сторону больших длин волн, а так как красный свет имеет длину волны больше, чем средняя длина волны видимого света, то такие звезды казались бы несколько краснее. Аналогично свет от тех звезд, которые приближаются к Земле, был бы сдвинут в сторону более коротких длин волн, поэтому звезды казались бы необычно голубыми. Вскоре, однако, Буа-Балло и другие заметили, что эффект Доплера не имеет никакого отношения к цвету звезд. Действительно, голубой свет от удаляющейся звезды сдвигается в красную сторону, но в то же время часть невидимого в нормальных условиях ультрафиолетового света звезды сдвигается в голубую часть видимого спектра, поэтому общий цвет вряд ли меняется[7]. Звезды имеют разный цвет главным образом потому, что у них разная температура поверхности.

Однако эффект Доплера приобрел огромную важность для астрономии в 1868 году, когда он был применен к изучению отдельных спектральных линий. За много лет до этого, в 1814–1815 годах, мюнхенский оптик Иозеф Фраунгофер обнаружил, что когда свет от Солнца пропускается через щель, а затем через стеклянную призму, то получающийся цветовой спектр пересекается сотнями темных линий, каждая из которых является изображением щели. (Некоторые из этих линий были замечены еще раньше, в 1802 году, Уильямом Хайдом Волластоном, но не были в то время детально изучены.) Темные линии всегда соответствовали одним и тем же цветам, причем каждая линия отвечала определенной длине волны света. Такие же темные спектральные линии и на тех же местах были найдены Фраунгофером в спектрах Луны и ярчайших звезд. Вскоре стало ясно, что эти темные линии возникают в результате избирательного поглощения света определенных длин волн в то время, когда свет от горячей поверхности звезды проходит через ее более холодную атмосферу. Каждая линия обязана своим происхождением поглощению света определенным химическим элементом, поэтому удалось установить, что элементы, имеющиеся на Солнце, такие, как натрий, железо, магний, кальций и хром, это те же элементы, что и найденные на Земле. Мы знаем сегодня, что длина волны темных линий соответствует энергии фотонов, которая в точности такова, чтобы перевести атом из состояния наименьшей энергии в одно из его возбужденных состояний.

Связь между красным смещением и расстоянием.

Здесь показаны яркие галактики из пяти скоплений галактик, а также их спектры. Спектры галактик представляют собой длинные горизонтальные белые полосы, пересеченные несколькими короткими темными вертикальными линиями. Каждое место вдоль этих спектров соответствует свету от галактики с определенной длиной волны; темные вертикальные линии возникают от поглощения света в атмосферах звезд этих галактик. (Яркие вертикальные линии выше и ниже спектра каждой галактики являются просто стандартными спектрами для сравнения, наложенными на спектр галактики для определения длин волн.) Стрелки ниже каждого спектра указывают на сдвиг двух специфических линий поглощения (Н- и Х-линии кальция) от их нормального положения к правому (красному) концу спектра. Красное смещение этих линий поглощения, если интерпретировать его как эффект Доплера, указывает, что скорость меняется в интервале от 1200 километров в секунду для галактики в скоплении Девы, до 61 000 км/с для скопления Гидры. С учетом того, что красное смещение пропорционально расстоянию, это означает, что указанные галактики находятся на все более далеких расстояниях. (Приведенные здесь расстояния вычислены с помощью постоянной Хаббла, равной 15,3 км/с на миллион световых лет.) Такая интерпретация подтверждается тем, что с ростом красного смещения галактики кажутся все более маленькими и слабыми (фотография Хейльской обсерватории).


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Объясняя мир. Истоки современной науки

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.