Первые три минуты - [39]
Теперь уже достаточно прохладно для того, чтобы образовались различные стабильные ядра вроде гелия (>4Не), но это не происходит сразу. Причина в том, что Вселенная все еще столь быстро расширяется, что ядра могут образовываться лишь в серии быстрых двухчастичных реакций. Например, протон и нейтрон могут образовать ядро тяжелого водорода, или дейтерия, причем избыток энергии и импульса уносится фотоном. Ядро дейтерия может затем столкнуться с протоном или нейтроном и образовать либо ядро легкого изотопа гелия-3 (>3Не), состоящего из двух протонов и нейтрона, либо ядро самого тяжелого изотопа водорода, называемого тритием (>3Н), состоящего из протона и двух нейтронов. Наконец, гелий-3 может столкнуться с нейтроном, а тритий — с протоном, причем в обоих случаях образуется ядро обычного гелия (>4Не), состоящего из двух протонов и двух нейтронов. Но для того чтобы эта цепочка реакций произошла, нужно начать с первого шага — с образования дейтерия[41].
Обычный гелий — это сильносвязанное ядро, поэтому, как я говорил, он может удерживаться и при температуре третьего кадра. Тритий и гелий-3 связаны много слабее, а дейтерий — особенно слабо. (Чтобы развалить ядро дейтерия на части, нужна лишь девятая часть той энергии, которая требуется, чтобы выбить одну ядерную частицу из ядра гелия). При температуре четвертого кадра 10>10 К ядра дейтерия разрушаются так же быстро, как и образуются, поэтому более тяжелые ядра не имеют шансов образоваться. Нейтроны продолжают превращаться в протоны, хотя и значительно медленнее, чем раньше; баланс теперь составляет 17 процентов нейтронов и 83 процента протонов.
Пятый кадр. Теперь температура Вселенной равна одному миллиарду градусов Кельвина (10>9 К), что всего лишь в 70 раз горячее, чем в центре Солнца. С момента первого кадра прошло три минуты и две секунды. Большинство электронов и позитронов исчезло, и главными составными частями Вселенной являются теперь фотоны, нейтрино и антинейтрино. Энергия, выделившаяся при аннигиляции электронов и позитронов, дала фотонам температуру на 35 процентов большую, чем у нейтрино.
Сейчас Вселенная уже достаточно прохладна, чтобы могли удерживаться ядра трития и гелия-3 так же, как и обычного гелия, однако «дейтериевая щель»[42] все еще существует: ядра дейтерия не удерживаются от развала достаточно долго для того, чтобы дать возможность образоваться заметному числу более тяжелых ядер. Столкновения нейтронов и протонов с электронами, нейтрино с их античастицами сейчас стали уже довольно редкими, но становится существенным распад свободного нейтрона; каждые 100 секунд 10 процентов остающихся нейтронов распадаются на протоны. Теперь нейтрон-протонный баланс составляет 14 процентов нейтронов и 86 процентов протонов.
Чуть позже. В какой-то момент времени, вскоре после пятого кадра, происходит драматическое событие: температура падает до точки, при которой ядра дейтерия могут удерживаться от развала. Раз пройдена дейтериевая щель, более тяжелые ядра могут очень быстро образовываться в цепочке двухчастичных реакций, описанных в четвертом кадре[43]. Однако ядра тяжелее гелия не образуются в заметном количестве благодаря другим щелям: не существует стабильных ядер с пятью или восемью ядерными частицами[44]. Следовательно, как только температура достигает точки, когда может образоваться дейтерий, почти все оставшиеся нейтроны немедленно уходят на приготовление ядер гелия. Точная температура, при которой это происходит, слегка зависит от числа ядерных частиц на фотон, так как высокая плотность частиц несколько облегчает образование ядер. (Именно поэтому данный момент времени я обозначил неопределенно словами «чуть позже, чем пятый кадр».) В случае одного миллиарда фотонов на одну ядерную частицу нуклеосинтез начнется при температуре 900 миллионов градусов Кельвина (0,9 × 10>9К). С момента первого кадра прошло уже три минуты и сорок шесть секунд. (Читатель простит мне неточность в названии этой книги «Первые три минуты». Это просто лучше звучит, чем «Первые три и три четверти минуты».) Как раз перед началом нуклеосинтеза, нейтронный распад сдвинул нейтрон-протон-ный баланс до 13 процентов нейтронов и 87 процентов протонов. После нуклеосинтеза доля гелия по массе в точности равна доле всех ядерных частиц, связанных в гелии; половина из них — нейтроны, и практически все нейтроны связаны в ядре гелия, так что доля гелия по массе просто есть удвоенная доля нейтронов среди ядерных частиц, т. е. около 26 процентов. Если плотность ядерных частиц несколько выше, нуклеосинтез начнется немного раньше, когда еще распалось не так много нейтронов, поэтому образуется чуть больше гелия, но, вероятно, не более чем 28 процентов по массе (рис. 9).
Рис. 9. Сдвиг нейтрон-протонного баланса. Показана доля нейтронов по отношению ко всем ядерным частицам как функция температуры и времени. Часть кривой, помеченная надписью «тепловое равновесие», описывает период, в течение которого плотности и температуры были столь высоки, что среди всех частиц достигалось тепловое равновесие; доля нейтронов в этой области может быть вычислена по известной разности масс нейтрона и протона с помощью правил статистической механики. Часть кривой, помеченная надписью «распад нейтрона», описывает период, в течение которого все процессы взаимопревращений нейтронов и протонов исчезли, за исключением радиоактивного распада свободного нейтрона. Сплошная часть кривой зависит от детальных расчетов вероятностей процессов слабого взаимодействия. Пунктирная часть кривой показывает, что случилось бы, если бы ка-ким-то образом было предотвращено образование ядер. В действительности, в момент времени где-то внутри интервала, отмеченного стрелкой с надписью «эра нуклеосинтеза», нейтроны быстро объединились в ядра гелия и нейтрон-протонное отношение замерзло на том значении, которое оно в этот момент имело. Эту кривую можно также использовать для оценки доли (по массе) космологически образованного гелия: для любой данной температуры или данного времени нуклеосинтеза эта доля в точности равна удвоенной нейтронной фракции в этот момент
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Тим Пик увлекается марафонским бегом, альпинизмом и лыжным спортом, воспитывает сына и ходит в спелеологичес кие походы в Западном Суссексе. А еще Тим прошел отбор в программу Европейского космического агентства (EKA). На шесть мест для полетов в открытый космос претендовало более 8000 участников… А сегодня Тим Пик – единственный космонавт во всей Великобритании. 15 декабря 2015 года в 14:03 Тим Пик в должности второго борт инженера отправился с космодрома Байконур к МКС, чтобы провести на орбите 186 суток и узнать все о том, как жить и выживать в космосе. Что чувствовал Тим, вращаясь вокруг Земли быстрее, чем ускоряющаяся пуля? Каково это есть, спать и вообще жить в космосе? Что делать, когда нечего делать? Как вообще обстоят дела в современном космосе? Вернувшись домой, Тим решил поделиться всем пережитым с землянами.
Нину Михайловну Субботину (1877–1961) можно по праву назвать Стивеном Хокингом российской науки. Одна из первых российских женщин-астрономов, она получила профессиональное образование, но не могла работать в научном учреждении из-за тяжелой болезни, перенесенной в детстве. Создав собственную обсерваторию, Субботина успешно занималась наблюдательной астрономией и изучением солнечно-земных связей. Данные ее наблюдений регулярно публиковались в самых престижных международных астрономических журналах. Но круг ее интересов был значительно шире.
Летчик-космонавт СССР, командир космического корабля «Союз-6» рассказывает о том, как создавался первый отряд космонавтов, о сложном и требовательном отборе, через который пришлось пройти каждому, но далеко не каждому удалось успешно выдержать все испытания и слетать в космос. О судьбах этих людей откровенно и глубоко повествует книга. Читатели узнают интересные подробности о полетах первых советских космонавтов. Книга посвящается пятнадцатилетию первого старта человека в космос.
«Как попасть в отряд космонавтов?», «Что вы едите на борту космического корабля?», «Есть ли интернет на МКС?», «Плоская ли Земля?» – эти и другие вопросы постоянно задают космонавтам. Космонавт Сергей Рязанский в этой книге отвечает на вопросы, которые интересуют многочисленных любителей космонавтики.
Американский астронавт Скотт Келли совершил четыре полета в космос, дважды был членом многодневной американской миссии на Международной космической станции и провел на орбите в общей сложности более 500 суток. О его необычайном опыте много писали в прессе, а теперь есть возможность узнать подробности от него самого. Искренний рассказ о себе, своем детстве, взрослении рисует точный психологический портрет человека, выбирающего путь астронавта, помогает увидеть бесстрашных героев с необычного ракурса и лучше понять их мотивацию и личностные особенности.
В книге впервые (1992) в открытой отечественной литературе проводится систематический обзор советских космических систем военного назначения. Приводится классификация военных космических систем по выполняемым функциям, рассматривается организационная эволюция космической программы СССР и описываются советские космические системы военного и двойного назначения. Книга содержит большой справочный и статистический материал и предназначена для специалистов по космической технике, а также для лиц, интересующихся космонавтикой.Автор – выпускник факультета аэрофизики и космических исследований Московского физико-технического института, кандидат физико-математических наук.