Первые три минуты - [13]
Существует, однако, независимый способ подтверждения того, что галактики на самом деле разлетаются так, как указывают их красные смещения. Как мы видели, эта интерпретация красных смещений приводит к выводу, что расширение Вселенной началось чуть меньше, чем 20 миллиардов лет назад. Следовательно, такая интерпретация подтвердится, если мы сможем найти любое другое свидетельство того, что Вселенная действительно имеет такой возраст. И в самом деле, имеется довольно много фактов, подтверждающих, что возраст нашей Галактики примерно 10–15 миллиардов лет. Такие оценки возникают как из анализа относительного содержания различных радиоактивных изотопов на Земле (особенно изотопов урана >235U и >238U), так и из расчета эволюции звезд. Определенно нет никакой прямой связи между скоростью радиоактивного распада или звездной эволюцией и красным смещением далеких галактик, поэтому такое совпадение делает весьма убедительным заключение, что возраст Вселенной, выведенный из постоянной Хаббла, действительно близок к истинному значению.
С исторической точки зрения интересно в связи с этим напомнить, что в 30-е и 40-е годы считали, что постоянная Хаббла значительно больше — около 170 км/с на миллион световых лет. Согласно нашим предыдущим рассуждениям, возраст Вселенной будет тогда равен одному миллиону световых лет, деленному на 170 км/с, что составляет около двух миллиардов лет или даже меньше, если мы примем во внимание гравитационное торможение. Но со времен изучения радиоактивности лордом Резерфордом было хорошо известно, что Земля значительно старше этого возраста; сейчас принято считать возраст Земли равным 4,6 миллиардов лет! Едва ли Земля может быть старше Вселенной, поэтому астрономы вынуждены были сомневаться в том, что красное смещение что-то говорит нам о возрасте Вселенной. Некоторые из наиболее хитроумных космологических идей 30-х и 40-х годов, включая, возможно, и теорию стационарного состояния, были порождены этим явным парадоксом. Может быть, именно устранение в 50-е годы парадокса возраста, благодаря десятикратному увеличению шкалы внегалактических расстояний, было существенным предварительным условием для появления космологии большого взрыва в качестве стандартной модели.
Та картина Вселенной, которую мы здесь описываем, представляет собой расширяющийся рой галактик. До сих пор свет играл для нас лишь роль «звездного посланца», несущего информацию о галактических расстояниях и скоростях. Однако в ранней Вселенной были совсем другие условия; как мы увидим, именно свет был главной составной частью Вселенной, а обычное вещество играло роль пренебрежимо малой примеси. Поэтому позднее нам пригодится, если сейчас мы повторим, что мы узнали о красном смещении в терминах поведения световых волн в расширяющейся Вселенной.
Рассмотрим световую волну, распространяющуюся между двумя типичными галактиками. Расстояние между галактиками равно времени распространения света, умноженному на скорость света, а увеличение этого расстояния за время путешествия света равно времени распространения света, умноженному на относительную скорость галактик. Когда мы вычисляем относительный рост взаимного расстояния, мы делим увеличение расстояния на среднее значение этого расстояния за время увеличения и находим, что при этом время распространения света сокращается: относительное увеличение расстояния между этими двумя галактиками (а следовательно, между любыми другими типичными галактиками) за время распространения света есть просто отношение относительной скорости галактик к скорости света. Но как мы видели раньше, это же отношение определяет относительное увеличение длины волны света за время его путешествия. Таким образом, в процессе расширения Вселенной длина волны любого луча света просто увеличивается пропорционально взаимному расстоянию между типичными галактиками. Можно представлять себе это так, будто гребни волн в процессе расширения Вселенной все дальше и дальше «растаскиваются» друг от друга. Хотя, строго говоря, наша аргументация справедлива только для малого времени распространения, но, соединяя последовательность таких небольших путешествий в одно целое, мы вправе заключить, что вывод верен и в общем случае. Например, когда мы смотрим на галактику ЗС295 и обнаруживаем, что длины волн в ее спектре на 46 процентов больше, чем в наших стандартных таблицах спектральных линий, мы можем заключить, что Вселенная сейчас на 46 процентов больше по размеру, чем она была тогда, когда свет покинул ЗС295.
До этого момента мы сосредоточивали внимание на вопросах, которые физики называют кинематическими и которые связаны с описанием движения без какого-либо рассмотрения сил, управляющих этим движением. Однако в течение столетий физики и астрономы пытались понять динамику Вселенной. Неизбежно это привело к изучению космологической роли той единственной силы, которая действует между астрономическим телами, — силы тяготения.
Как и следовало ожидать, первым, кто вступил в схватку с этой проблемой, был Исаак Ньютон. В знаменитой переписке с кембриджским филологом Ричардом Бентли Ньютон утверждал, что если бы материя Вселенной была равномерно распределена в
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.