Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - [31]

Шрифт
Интервал

чуть медленнее >std::lock_guard, потому что флаг нужно проверять и обновлять. Если класс >std::lock_guard отвечает вашим нуждам, то я рекомендую использовать его. Тем не менее, существуют ситуации, когда >std::unique_lock лучше отвечает поставленной задаче, так как без свойственной ему дополнительной гибкости не обойтись. Один из примеров — показанный выше отложенный захват; другой — необходимость передавать владение мьютексом из одного контекста в другой.

3.2.7. Передача владения мьютексом между контекстами

Поскольку экземпляры >std::unique_lock не владеют ассоциированными мьютексами, то можно передавать владение от одного объекта другому путем перемещения. В некоторых случаях передача производится автоматически, например при возврате объекта из функции, а иногда это приходится делать явно, вызывая >std::move(). Ситуация зависит от того, является ли источник l-значением — именованной переменной или ссылкой на нее — или r-значением — временным объектом. Если источник — r-значение, то передача владения происходит автоматически, в случае же l-значение это нужно делать явно, чтобы не получилось так, что переменная потеряет владение непреднамеренно. Класс >std::unique_lock дает пример перемещаемого, но не копируемого типа. Дополнительные сведения о семантике перемещения см. в разделе А.1.1 приложения А.

Одно из возможных применений — разрешить функции захватить мьютекс, а потом передать владение им вызывающей функции, чтобы та могла выполнить дополнительные действия под защитой того же мьютекса. Ниже приведен соответствующий пример — функция >get_lock() захватывает мьютекс, подготавливает некоторые данные, а потом возвращает мьютекс вызывающей программе:

>std::unique_lock get_lock() {

> extern std::mutex some_mutex;

> std::unique_lock lk(some_mutex);

> prepare_data();

> return lk; ←(1)

>}


>void process_data() {

> std::unique_lock lk(get_lock()); ←(2)

> do_something();

>}

Поскольку >lk — автоматическая переменная, объявленная внутри функции, то ее можно возвращать непосредственно (1), не вызывая >std:move(); компилятор сам позаботится о вызове перемещающего конструктора. Затем функция >process_data() может передать владение своему экземпляру >std::unique_lock(2), и >do_something() может быть уверена, что подготовленные данные не были изменены каким-то другим потоком.

Обычно подобная схема применяется, когда подлежащий захвату мьютекс зависит от текущего состояния программы или от аргумента, переданного функции, которая возвращает объект >std::unique_lock. Например, так имеет смысл делать, когда блокировка возвращается не напрямую, а является членом какого-то класса-привратника, обеспечивающего корректный доступ к разделяемым данным под защитой мьютекса. В таком случае любой доступ к данным производится через привратник, то есть предварительно необходимо получить его экземпляр (вызвав функцию, подобную >get_lock() в примере выше), который захватит мьютекс. Затем для доступа к данным вызываются функции-члены объекта-привратника. По завершении операции привратник уничтожается, при этом мьютекс освобождается, открывая другим потокам доступ к защищенным данным. Такой объект-привратник вполне может быть перемещаемым (чтобы его можно было возвращать из функции), и тогда тот его член, в котором хранится блокировка, также должен быть перемещаемым.

Класс >std::unique_lock также позволяет экземпляру освобождать блокировку без уничтожения. Для этого служит функция-член >unlock(), как и в мьютексе; >std::unique_lock поддерживает тот же базовый набор функций-членов для захвата и освобождения, что и мьютекс, чтобы его можно было использовать в таких обобщенных функциях, как >std::lock. Наличие возможности освобождать блокировку до уничтожения объекта >std::unique_lock означает, что освобождение можно произвести досрочно в какой-то ветке кода, если ясно, что блокировка больше не понадобится. Иногда это позволяет повысить производительность приложения, ведь, удерживая блокировку дольше необходимого, вы заставляете другие потоки впустую ждать, когда они могли бы работать.

3.2.8. Выбор правильной гранулярности блокировки

О гранулярности блокировок я уже упоминал в разделе 3.2.3: под этим понимается объем данных, защищаемых блокировкой. Мелкогранулярные блокировки защищают мало данных, крупногранулярные — много. Важно не только выбрать подходящую гранулярность, но и позаботиться о том, чтобы блокировка удерживалась не дольше, чем реально необходимо. Все мы сталкивались с ситуацией, когда очередь к кассе в супермаркете перестает двигаться из-за того, что обслуживаемый покупатель вдруг выясняет, что забыл прихватить баночку соуса, и отправляется за ней, заставляя всех ждать, или из-за того, что кассирша уже готова принять деньги, а покупатель только— только полез за кошельком. Насколько было бы проще, если бы каждый подходил к кассе только после того, как купил все необходимое и подготовился оплатить покупки.

Вот так и с потоками: если несколько потоков ждут одного ресурса (кассира), то, удерживая блокировку дольше необходимого, они заставляют другие потоки проводить в очереди больше времени (не начинайте искать баночку соуса, когда уже подошли к кассе). По возможности захватывайте мьютекс непосредственно перед доступом к разделяемым данным; старайтесь производить обработку данных, не находясь под защитой мьютекса. В частности, не начинайте длительных операций, например файловый ввод/вывод, когда удерживаете мьютекс. Ввод/вывод обычно выполняется в сотни (а то и в тысячи) раз медленнее чтения или записи того же объема данных в памяти. Поэтому если блокировка не нужна для защиты доступа к файлу, то удерживание блокировки заставляет другие потоки ждать без необходимости (так как они не могут захватить мьютекс), и тем самым вы можете свести на нет весь выигрыш от многопоточной работы.


Еще от автора Энтони Д Уильямс
Викиномика. Как массовое сотрудничество изменяет всё

Это знаменитый бестселлер, который научит вас использовать власть массового сотрудничества и покажет, как применять викиномику в вашем бизнесе. Переведенная более чем на двадцать языков и неоднократно номинированная на звание лучшей бизнес-книги, "Викиномика" стала обязательным чтением для деловых людей во всем мире. Она разъясняет, как массовое сотрудничество происходит не только на сайтах Wikipedia и YouTube, но и в традиционных компаниях, использующих технологии для того, чтобы вдохнуть новую жизнь в свои предприятия.Дон Тапскотт и Энтони Уильямс раскрывают принципы викиномики и рассказывают потрясающие истории о том, как массы людей (как за деньги, так и добровольно) создают новости, изучают геном человека, создают ремиксы любимой музыки, находят лекарства от болезней, редактируют школьные учебники, изобретают новую косметику, пишут программное обеспечение и даже строят мотоциклы.Знания, ресурсы и вычислительные способности миллиардов людей самоорганизуются и превращаются в новую значительную коллективную силу, действующую согласованно и управляемую с помощью блогов, вики, чатов, сетей равноправных партнеров и личные трансляции.


Рекомендуем почитать
Pro Git

Разработчику часто требуется много сторонних инструментов, чтобы создавать и поддерживать проект. Система Git — один из таких инструментов и используется для контроля промежуточных версий вашего приложения, позволяя вам исправлять ошибки, откатывать к старой версии, разрабатывать проект в команде и сливать его потом. В книге вы узнаете об основах работы с Git: установка, ключевые команды, gitHub и многое другое.В книге рассматриваются следующие темы:основы Git;ветвление в Git;Git на сервере;распределённый Git;GitHub;инструменты Git;настройка Git;Git и другие системы контроля версий.


Java 7

Рассмотрено все необходимое для разработки, компиляции, отладки и запуска приложений Java. Изложены практические приемы использования как традиционных, так и новейших конструкций объектно-ориентированного языка Java, графической библиотеки классов Swing, расширенной библиотеки Java 2D, работа со звуком, печать, способы русификации программ. Приведено полное описание нововведений Java SE 7: двоичная запись чисел, строковые варианты разветвлений, "ромбовидный оператор", NIO2, новые средства многопоточности и др.


MFC и OpenGL

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.