Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - [18]

Шрифт
Интервал

. Пусть вас не пугает случай, когда одно число нацело не делится на другое, — ниже мы рассмотрим его.

Теперь, зная, сколько необходимо потоков, мы можем создать вектор >std::vector для хранения промежуточных результатов и вектор >std::vector для хранения потоков (5). Отметим, что запускать нужно на один поток меньше, чем >num_threads, потому что один поток у нас уже есть.

Запуск потоков производится в обычном цикле: мы сдвигаем итератор >block_end в конец текущего блока (6) и запускаем новый поток для аккумулирования результатов по этому блоку (7). Начало нового блока совпадает с концом текущего (8).

После того как все потоки запущены, главный поток может обработать последний блок (9). Именно здесь обрабатывается случай деления с остатком: мы знаем, что конец последнего блока — >last, а сколько в нем элементов, не имеет значения.

Аккумулировав результаты но последнему блоку, мы можем дождаться завершения всех запущенных потоков с помощью алгоритма >std::for_each(10), а затем сложить частичные результаты, обратившись к >std::accumulate(11).

Прежде чем расстаться с этим примером, полезно отметить, что в случае, когда оператор сложения, определенный в типе >T, не ассоциативен (например, если >T — это >float или >double), результаты, возвращаемые алгоритмами >parallel_accumulate и >std::accumulate, могут различаться из-за разбиения диапазона на блоки. Кроме того, к итераторам предъявляются более жесткие требования: они должны быть по меньшей мере однонаправленными, тогда как алгоритм >std::accumulate может работать и с однопроходными итераторами ввода. Наконец, тип >T должен допускать конструирование по умолчанию (удовлетворять требованиям концепции DefaultConstructible), чтобы можно было создать вектор >results. Такого рода изменения требований довольно типичны для параллельных алгоритмов: но самой своей природе они отличаются от последовательных алгоритмов, и это приводит к определенным последствиям в части как результатов, так и требований. Более подробно параллельные алгоритмы рассматриваются в главе 8. Стоит также отметить, что из-за невозможности вернуть значение непосредственно из потока, мы должны передавать ссылку на соответствующий элемент вектора >results. Другой способ возврата значений из потоков, с помощью будущих результатов, рассматривается в главе 4.

В данном случае вся необходимая потоку информация передавалась в момент его запуска  в том числе и адрес, но которому необходимо сохранить результат вычисления. Так бывает не всегда; иногда требуется каким-то образом идентифицировать потоки во время работы. Конечно, можно было бы передать какой-то идентификатор, например значение >i в листинге 2.7, но если вызов функции, которой этот идентификатор нужен, находится несколькими уровнями стека глубже, и эта функция может вызываться из любого потока, то поступать так неудобно. Проектируя библиотеку С++ Thread Library, мы предвидели этот случай, поэтому снабдили каждый поток уникальным идентификатором.

2.5. Идентификация потоков

Идентификатор потока имеет тип >std::thread::id, и получить его можно двумя способами. Во-первых, идентификатор потока, связанного с объектом >std::thread, возвращает функция-член >get_id() этого объекта. Если с объектом >std::thread не связан никакой поток, то >get_id() возвращает сконструированный по умолчанию объект типа >std::thread::id, что следует интерпретировать как «не поток». Идентификатор текущего потока можно получить также, обратившись к функции >std::this_thread::get_id(), которая также определена в заголовке >.

Объекты типа >std::thread::id можно без ограничений копировать и сравнивать, в противном случае они вряд ли могли бы играть роль идентификаторов. Если два объекта типа >std::thread::id равны, то либо они представляют один и тот же поток, либо оба содержат значение «не поток». Если же два таких объекта не равны, то либо они представляют разные потоки, либо один представляет поток, а другой содержит значение «не поток».

Библиотека Thread Library не ограничивается сравнением идентификаторов потоков на равенство, для объектов типа >std::thread::id определен полный спектр операторов сравнения, то есть на множестве идентификаторов потоков задан полный порядок. Это позволяет использовать их в качестве ключей ассоциативных контейнеров, сортировать и сравнивать любым интересующим программиста способом. Поскольку операторы сравнения определяют полную упорядоченность различных значений типа >std::thread::id, то их поведение интуитивно очевидно: если >a и >b то >а<с и так далее. В стандартной библиотеке имеется также класс >std::hash, поэтому значения типа >std::thread::id можно использовать и в качестве ключей новых неупорядоченных ассоциативных контейнеров.

Объекты >std::thread::id часто применяются для того, чтобы проверить, должен ли поток выполнить некоторую операцию. Например, если потоки используются для разбиения задач, как в листинге 2.8, то начальный поток, который запускал все остальные, может вести себя несколько иначе, чем прочие. В таком случае этот поток мог бы сохранить значение


Еще от автора Энтони Д Уильямс
Викиномика. Как массовое сотрудничество изменяет всё

Это знаменитый бестселлер, который научит вас использовать власть массового сотрудничества и покажет, как применять викиномику в вашем бизнесе. Переведенная более чем на двадцать языков и неоднократно номинированная на звание лучшей бизнес-книги, "Викиномика" стала обязательным чтением для деловых людей во всем мире. Она разъясняет, как массовое сотрудничество происходит не только на сайтах Wikipedia и YouTube, но и в традиционных компаниях, использующих технологии для того, чтобы вдохнуть новую жизнь в свои предприятия.Дон Тапскотт и Энтони Уильямс раскрывают принципы викиномики и рассказывают потрясающие истории о том, как массы людей (как за деньги, так и добровольно) создают новости, изучают геном человека, создают ремиксы любимой музыки, находят лекарства от болезней, редактируют школьные учебники, изобретают новую косметику, пишут программное обеспечение и даже строят мотоциклы.Знания, ресурсы и вычислительные способности миллиардов людей самоорганизуются и превращаются в новую значительную коллективную силу, действующую согласованно и управляемую с помощью блогов, вики, чатов, сетей равноправных партнеров и личные трансляции.


Рекомендуем почитать
JavaScript с нуля

JavaScript еще никогда не был так прост! Вы узнаете все возможности языка программирования без общих фраз и неясных терминов. Подробные примеры, иллюстрации и схемы будут понятны даже новичку. Легкая подача информации и живой юмор автора превратят нудное заучивание в занимательную практику по написанию кода. Дойдя до последней главы, вы настолько прокачаете свои навыки, что сможете решить практически любую задачу, будь то простое перемещение элементов на странице или даже собственная браузерная игра.


Как хорошему разработчику не стать плохим менеджером

В этой книге автор, сам прошедший путь от разработчика до менеджера в сфере IT, рассказывает неочевидные моменты, которые являются критически важными для правильного управления. Почему разработчики увольняются после повышения зарплаты? Как делать FixedPrice проекты? Почему Scrum не упрощает менеджмент? Книга содержит ответ на эти и многие другие вопросы. В книге есть много баек, которые показывают тяжёлую, но интересную жизнь менеджера в разработке. Иллюстратор обложки: Ксения Ерощенко. Иллюстрации в тексте книги авторские.


Геймдизайн. Рецепты успеха лучших компьютерных игр от Super Mario и Doom до Assassin’s Creed и дальше

Что такое ГЕЙМДИЗАЙН? Это не код, графика или звук. Это не создание персонажей или раскрашивание игрового поля. Геймдизайн – это симулятор мечты, набор правил, благодаря которым игра оживает. Как создать игру, которую полюбят, от которой не смогут оторваться? Знаменитый геймдизайнер Тайнан Сильвестр на примере кейсов из самых популярных игр рассказывает как объединить эмоции и впечатления, игровую механику и мотивацию игроков. Познакомитесь с принципами дизайна, которыми пользуются ведущие студии мира! Создайте игровую механику, вызывающую эмоции и обеспечивающую разнообразие.


Интернет решения от доктора Боба

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Как писать драйвера

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Интерфейс: новые направления в проектировании компьютерных систем

Книга эта непростая и подойдет не каждому. Автор анализирует то, к чему мы все давно привыкли до автоматизма, и объясняет, что интерфейс многих современных программ далек от совершенства. Как его улучшить, в каком направлении двигаться дальше? Попробуйте найти ответы вместе с самым известным специалистом в этой области – Джефом Раскиным, создателя проекта Apple Macintosh.Сейчас много говорят об эффективности современных подходов к разработке интерфейсов. Раскин же демонстрирует, что многие из них ведут в тупик, и для создания компьютеров, с которыми было бы проще работать, требуются совершенно новые принципы разработки.