Параллельное и распределенное программирование на С++ - [38]

Шрифт
Интервал

1. Установить структуру данных для сеточных моделей многоугольников.

2. Применить линейные преобразования.

3. Отбраковать многоугольники, относящиеся к невидимой поверхности.

4. Выполнить растеризацию.

5. Применить алгоритм удаления скрытых поверхностей.

6. Затушевать отдельные пиксели.

Первая задача состоит в представлении объекта в виде массива многоугольников, в котором каждая вершина многоугольника описывается в трехмерной мировой системе координат. Вторая задача — применить линейные преобразования к сеточной модели многоугольников. Эти преобразования используются для позиционирования объектов на сцене и создания точки обзора или поверхности отображения (области, которая видима наблюдателю с его точки обзора). Третья задача — отбраковать невидимые поверхности объектов на сцене. Это означает удаление линий, принадлежащих тем частям объектов, которые невидимы с точки обзора. Четвертая задача — преобразовать модель вершин в набор координат пикселей. Пятая задача — удалить любые скрытые поверхности. Если сцена содержит взаимодействующие объекты, например, когда одни объекты заслоняют другие, то скрытые (передними объектами) поверхности должны быть удалены. Шестая задача - наложить на поверхности изображения тень.


Рис. 3.13. Способы разбиения программы на отдельные задачи


Рис. 3.14. Этапы визуализации

Решение каждой задачи представляется в виде отдельного выполняемого файла. Первые три задачи (Taskl, Task2 и Task3) выполняются последовательно, а остальные три (Task4, Task5 и Task6)— параллельно. Реализация первого способа создания программы визуализации приведена в листинге 3.5.

// Листинг 3.5. Использование способа 1 для создания процессов

>#include

>#include

>#include

>#include

>#include

>#include

>int main(void) {

>posix_spawnattr_t Attr;

>posix_spawn_file_actions_t FileActions;

>char *const argv4[] = {«Task4»,...,NULL};

>char *const argv5[] = {«Task5'\...,NULL};

>char *const argv6[] = {«Task6»,...,NULL};

>pid_t Pid;

>int stat;

>// Выполняем первые три задачи синхронно,

>system(«Taskl . . . ") ;

>system(«Task2 . . . ") ;

>system(«Task3 . . . ") ;

>//иниииализируем структуры

> posix_spawnattr_init(&Attr);

> posix_spawn_file_actions_init(&FileActions);


> // execute last 3 tasks asynchronously

> posix_spawn(&Pid,«Task4»,&FileActions,&Attr,argv4,NULL);

> posix_spawn(&Pid,«Task5»,&FileActions,&Attr,argv5,NULL);

> posix_spawn(&Pid,«Task6»,&FileActions,&Attr,argv6,NULL);


> // like a good parent, wait for all your children

> wait (&stat);

> wait (&stat);

> wait (&stat);

> return(0);

>}

В листинге 3.5 из функции main () с помощью функции system( ) вызываются на выполнение задачи Task1, Task2 и Task3. Каждая из них выполняется синхронно с родительским процессом. Задачи Task4, Task5 и Task6 выполняются асинхронно родительскому процессу благодаря использованию функций posix__spawn( ). Многоточие (... ) используется для обозначения файлов, требуемых задачам. Родительский процесс вызывает три функции wait (), и каждая из них ожидает завершения одной из задач (Task4, Task5 или Task6).

Используя второй способ, программу визуализации можно запустить из сценария командной оболочки. Преимущество этого сценария состоит в том, что он позволяет использовать все команды и операторы оболочки. В нашей программе визуализации для управления выполнением задач используются метасимволы & и &&.

Task1 ... && Task2 ... && Task3 Task4 . . . & Task5 . . . & Task6

Здесь благодаря использованию метасимвола && задачи Task1, Task2 и Task3 выполняются последовательно при условии успешного выполнения предыдущей задачи. Задачи же Task4, Task5 и Task6 выполняются одновременно, поскольку использован метасимвол &. Приведем некоторые метасимволы, применяемые при разделении команд в средах UNIX/Linux, и способы выполнения этих команд.

&& Каждая следующая команда будет выполняться только в случае успешного выполнения предыдущей команды.

|| Каждая следующая команда будет выполняться только в случае неудачного выполнения предыдущей команды.

; Команды должны выполняться последовательно.

& Все команды должны выполняться одновременно.

При использовании третьего способа задачи делятся по категориям. При декомпозиции программы следует разобраться, можно ли в ней выделить различные категории задач. Например, одни задачи могут «отвечать» за интерфейс пользователя, т.е. его создание, ввод данных, вывод данных и пр. Другим задачам поручаются вычисления, управление данными и пр. Такой подход весьма полезен не только при проектировании программы, но и при ее реализации. В нашей программе визуализации мы можем разделить задачи по следующим категориям:

•  задачи, которые выполняют линейные преобразованиях преобразования изображения на экране при изменении точки обзора; преобразования сцены;

•  задачи, которые выполняют растеризацию: вычерчивание линий; заливка участков сплошного фона; растеризация многоугольников;

•  задачи, которые выполняют удаление поверхностей: удаление скрытых поверхностей; удаление невидимых поверхностей;


Рекомендуем почитать
Графика DirectX в Delphi

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Вторая жизнь старых компьютеров

Сейчас во многих школах, институтах и других учебных заведениях можно встретить компьютеры старого парка, уже отслужившие свое как морально, так и физически. На таких компьютерах можно изучать разве что Dos, что далеко от реалий сегодняшнего дня. К тому же у большинства, как правило, жесткий диск уже в нерабочем состоянии. Но и выбросить жалко, а новых никто не дает. Различные спонсоры, меценаты, бывает, подарят компьютер (один) и радуются, как дети. Спасибо, конечно, большое, но проблемы, как вы понимаете, этот компьютер в общем не решает, даже наоборот, усугубляет, работать на старых уже как-то не хочется, теперь просто есть с чем сравнивать.


DirectX 8. Начинаем работу с DirectX Graphics

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.