Параллельное и распределенное программирование на С++ - [18]

Шрифт
Интервал

• управляющий/рабочий;
• клиент/сервер
Модель равноправных узловВсе задачи, в основном, имеют одинаковый ранг, и работа между ними распределяется равномерноѴ
Векторная или конвейерная (поточная)обработкаОдин исполнительный узел соответствует каждому элементу массива (вектора) или шагу конвейераѴѴ
Дерево с родительскими и дочерними элементамиДинамически генерируемые исполнители в отношении типа «родитель/потомок». Этот тип архитектуры полезно использовать в алгоритмах следующих типов:ѴѴ
• рекурсия;
• «разделяй и властвуй»; •И/ИЛИ
• древовидная обработка

Различные методы тестирования и отладки

При тестировании последовательной программы разработчик может отследить ее логику в пошаговом режиме. Если он будет начинать тестирование с одних и тех же данных при условии, что система каждый раз будет пребывать в одном и том же состоянии, то результаты выполнения программы или ее логические цепочки будут вполне предсказуемыми. Программист может отыскать ошибки в программе, используя соответствующие входные данные и исходное состояние программы, путем проверки ее логики в пошаговом режиме. Тестирование и отладка в последовательной модели зависят от степени предсказуемости начального и текущего состояний программы, определяемых заданными входными данными.

С параллельным и распределенным программированием все обстоит иначе. Здесь трудно воспроизвести точный контекст параллельных или распределенных задач из-за разных стратегий планирования, применяемых в операционной системе, динамически меняющейся рабочей нагрузки, квантов процессорного времени, приоритетов процессов и потоков, временных задержек при их взаимодействии и собственно выполнении, а также различных случайных изменений ситуаций, характерных для параллельных или распределенных контекстов. Чтобы воспроизвести точное состояние в котором находилась среда при тестировании и отладке, необходимо воссоздать каждую задачу, выполнением которой была занята операционная система. При этом должен быть известен режим планирования процессорного времени и точно воспроизведены состояние виртуальной памяти и переключение контекстов. Кроме того, следует воссоздать условия возникновения прерываний и формирования сигналов, а в некоторых случаях — даже рабочую нагрузку сети. При этом нужно понимать, что и сами средства тестирования и отладки оказывают немалое влияние на состояние среды. Это означает, что создание одинаковой последовательности событий для тестирования и отладки зачастую невозможно. Необходимость воссоздания всех перечисленных выше условий обусловлено тем, что они позволяют определить, какие процессы или потоки следует выполнять и на каких именно процессорах. Смешанное выполнение процессов и потоков (в некоторой неудачной «пропорции») часто является причиной возникновения взаимоблокировок, бесконечных отсрочек, «гонки» данных и других проблем. И хотя некоторые из этих проблем встречаются и в последовательном программировании, они не в силах зачеркнуть допущения, сделанные при построении последовательной модели. Тот уровень предсказуемости, который имеет место в последовательной модели, недоступен для параллельного программирования. Это заставляет разработчика овладевать новыми тактическими приемами для тестирования и отладки параллельных и распределенных программ, а также требует от него поиска новых способов доказательства корректности его программ .

Связь между параллельным и распределенным проектами

При создании документации на проектирование параллельного или распределенного ПО необходимо описать декомпозицию работ и их синхронизацию, а также взаимодействие между задачами, объектами, процессами и потоками. При этом проектировщики должны тесно контактировать с разработчиками, а разработчики — с теми, кто будет поддерживать систему и заниматься ее администрированием. В идеале это взаимодействие должно осуществляться по действующим стандартам. Однако найти единый язык, понятный всем сторонам и позволяющий четко представить мультипарадигматическую природу всех этих систем, — трудно достижимая цель. Мы остановили свой выбор на языке UML (Unified Modeling Language — унифицированный язык моделирования). В табл. 2.3 перечислено семь UML-диаграмм, которые часто используются при создании многопоточных, параллельных или распределенных программ.


Семь диаграмм, перечисленных в табл. 2.3, представляют собой лишь подмножество диаграмм, которые предусмотрены языком UML, но они наиболее всего подходят к тому, что мы хотим подчеркнуть в наших проектах параллельного ПО. В частности, UML-диаграмм деятельности, развертывания и состояний весьма полезны для описания взаимодействующего поведения параллельной и распределенной подсистем обработки данных. Поскольку UML — это фактический стандарт, используемый при создании взаимодействующих объектно-ориентированных и агентно-ориентированных проектов, при изложении материала в этой книге мы опираемся именно на него. Описание обозначений и символов, используемых в перечисленных выше диаграммах, содержится в приложении А.

Таблица 2.3. UML-диаграммы, используемые при создании многопоточных, параллельных или распределенных программ


Рекомендуем почитать
Графика DirectX в Delphi

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Вторая жизнь старых компьютеров

Сейчас во многих школах, институтах и других учебных заведениях можно встретить компьютеры старого парка, уже отслужившие свое как морально, так и физически. На таких компьютерах можно изучать разве что Dos, что далеко от реалий сегодняшнего дня. К тому же у большинства, как правило, жесткий диск уже в нерабочем состоянии. Но и выбросить жалко, а новых никто не дает. Различные спонсоры, меценаты, бывает, подарят компьютер (один) и радуются, как дети. Спасибо, конечно, большое, но проблемы, как вы понимаете, этот компьютер в общем не решает, даже наоборот, усугубляет, работать на старых уже как-то не хочется, теперь просто есть с чем сравнивать.


DirectX 8. Начинаем работу с DirectX Graphics

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.