Ответы на экзаменационные билеты по эконометрике - [2]
Для рассмотрения теоремы Чебышева вначале необходимо доказать неравенство Чебышева. Неравенство Чебышева справедливо как для дискретных, так непрерывных случайных величин. Рассмотрим его на примере дискретных случайных величин.
Предположим, что случайная дискретная величина X подчиняется закону распределения вида:
Задача состоит в оценке вероятности того, что отклонение случайной величины Х от её математического ожидания М(Х) не превышает по абсолютной величине положительного числа β. Если число β достаточно мало, то задача будет состоять в оценке вероятности того, что случайная величина Х примет значения, достаточно близкие к своему математическому ожиданию М(Х). Данная задача решается с применением неравенства П.Л. Чебышева.
Неравенство Чебышева. Вероятность того, что отклонение случайной величины Х от её математического ожидания М(Х) по абсолютной величине меньше положительного числа β не меньше, чем
т. е.
Доказательство. Так как события |Х-М(Х)|‹ε и |Х-М(Х)|≥ε являются противоположными, то на основании теоремы сложения вероятностей сумма их вероятностей равна единице:
P(|Х-М(Х)|‹ε)+P(|Х-М(Х)|≥ε)=1.
Выразим из полученного равенства вероятность |Х-М(Х)|‹ε:
P(|Х-М(Х)|‹ε)=1– P(|Х-М(Х)|≥ε). (1)
Дисперсия случайной величины Х определяется по формуле:
D(X)=(x1–M(X))2*p1+(x2–M(X))2*p2+…+(xn–M(X))2*pn.
Если отбросить первые k+1 слагаемые, для которых выполняется условие |xj-M(X)|‹ ε, то получим следующее неравенство:
D(X)≥(xk+1–M(X))2*pk+1+(xk+2–M(X))2*pk+2+…+(xn–M(X))2*pn.
Возведя обе части неравенства
в квадрат, получим равносильное неравенство |xj–M(X)|2≥ε2. Если заменить в оставшейся сумме каждый из множителей |xj–M(X)|2 числом β2, то получим следующее выражение:
D(X)≥ ε2(pk+1+ pk+2+…+ pn).
Так как сумма в скобках (pk+1+ pk+2+…+ pn) является выражением вероятности P(|Х-М(Х)|≥ε), то справедливо неравенство (2):
D(X)≥ ε2P(|Х-М(Х)|≥ε),
или
Если подставить неравенство (2) в выражение (1), то получим:
что и требовалось доказать.
Теорема Чебышева. Если величины X1, X2, …, Xn являются последовательностью попарно независимых случайных величин, имеющих дисперсии, ограниченные одной и той же постоянной С (D(Xi)≤C), то, как бы ни было мало положительное число ε, вероятность неравенства
ε будет приближаться к единице, если число случайных величин достаточно мало. Другими словами, для любого положительного числа существует предел:
Доказательство. В силу второго свойства дисперсии (постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат) и оценки D(Xi)≤C получим:
Таким образом,
Из данного соотношения и неравенства Чебышева вытекает, что
Отсюда, переходя к пределу при n›ε, получим
Учитывая, что вероятность не может быть больше единицы, окончательно запишем:
что и требовалось доказать.
Если для рассматриваемых случайных величин математическое ожидание одинаково и дисперсии данных величин ограничены, то к ним применима теорема Чебышева. В этом случае считается справедливым утверждение, что среднее арифметическое достаточно большого количества попарно независимых случайных величин, дисперсии которых ограничены одной и той же постоянной, утрачивает характер случайной величины.
3. Теоремы Бернулли и Ляпунова
Предположим, что проводится n независимых испытаний. В каждом из этих испытаний вероятность наступления события А постоянна и равна р. Задача состоит в определении относительной частоты появлений события А. Данная задача решается с помощью теоремы Бернулли.
Теорема Бернулли. Если в каждом из n независимых испытаний событие A имеет постоянную вероятность p, то, как угодно близка к единице вероятность того, что отклонение относительной частоты m/n от вероятности p по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико, т. е. при соблюдении условий теоремы справедливо равенство:
Доказательство. Предположим, что
является дискретной случайной величиной, которая характеризует число появлений события А в каждом из испытаний. Данная величина может принимать только два значения: 1 (событие А наступило) с вероятностью р и 0 (событие А не наступило) с вероятностью q=1-p.
Случайные дискретные величины Хiявляются попарно независимыми и дисперсии их ограниченны, следовательно, к данным величинам применима теорема Чебышева:
Математическое ожидание а каждой из величин Хiравно вероятности р наступления события, следовательно, справедливо следующее равенство:
Таким образом, необходимо доказать, что дробь
или
равна относительной частоте m/n появлений события А в n испытаниях.
Каждая из величин
при наступлении события А в соответствующем испытании принимает значение, равное единице. Следовательно, сумма
равна числу m появлений события А в n испытаниях:
С учётом данного равенства можно окончательно записать:
что и требовалось доказать.
Однако при использовании теоремы Бернулли необходимо учитывать то, что из неё не следует равенство
Главным утверждением теоремы является то, что при достаточно большом количестве испытаний относительная частота m/n будет сколь угодно мало отличаться от постоянной вероятности р наступления события в каждом испытании. Другими словами, теорема Бернулли утверждает, что при n›
Шпаргалка подготовлена в соответствии с программой учебного курса «Экономическая статистика». В пособии кратко изложены ответы на вопросы по данной дисциплине, достаточные для ответа на экзамене или зачете. Пособие поможет в короткие сроки повторить ранее изученный материал, а также эффективно подготовиться к сдаче экзамена или зачета по данному предмету.Издание предназначено студентам экономических специальностей.
Книга директора Центра по исследованию банковского дела и финансов, профессора финансов Цюрихского университета Марка Шенэ посвящена проблемам гипертрофии финансового сектора в современных развитых странах. Анализируя положение в различных национальных экономиках, автор приходит к выводу о том, что финансовая сфера всё более действует по законам «казино-финансов» и развивается независимо и часто в ущерб экономике и обществу в целом. Автор завершает свой анализ, предлагая целую систему мер для исправления этого положения.
Джон Мейнард Кейнс является настолько крупной фигурой в истории экономической мысли, что его основная работа представляет бесспорный интерес, как для научных кругов, так и учащихся. Оригинальное содержание работы и важность вытекающих из нее практических заключений обусловили ее лидирующее положение среди трудов по экономике. Теория Кейнса далеко перешла за границы, определенные проблемой безработицы в Англии. Она дает интерпретацию рыночных отношений в целом и содержит полное обновление экономической теории и методов ее анализа.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В капиталистических государствах налоги и сборы с населения являются наиглавнейшими источниками доходов. Чем больше потребности буржуазного государства, тем выше обложение населения.Чтобы составить себе представление о тех суммах, которые ежегодно берутся с населения, достаточно указать на что именно они тратятся. Мы все знаем, что в буржуазных странах только говорят о разоружении. На самом деле буржуазия не только не разоружается, но с каждым годом увеличивает свои сухопутные армии и морской флот, повышает количество и качество вооружения.В Советском Союзе также взимаются налоги с населения, но у нас налоги имеют другие цели, и обложение производится по иному.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Убийца иллюзий (http://alexsword.livejournal.com/44189.html)10 февраля 2010 г.Многие задают вопросы – а что там случилось с Испанией, что там с Грецией, что там с Португалией и т.д.Ребята, поймите простую вещь! Это все частные симптомы одной большой болезни – гигантского разрыва между виртуальной стоимостью "финансовых активов" и физическими процессами создания новых ценностей. Это все равно, как если игроки в монополию договорятся, что их фантики будут обмениваться в реальном мире на реальные товары.