OrCAD PSpice. Анализ электрических цепей - [112]

Шрифт
Интервал

Проанализируем теперь с помощью Capture цепи с несколькими источниками переменного напряжения из главы 2. Создайте в Capture схему, показанную на рис. 14.35, с именем multisrc. Используйте VAC для каждого источника напряжения и установите V>1=200∠0° В, V>2=10∠-90° В (обратите внимание, что V>2 имеет «+» у нижнего полюса) и V>3=40∠0° В. Значения R, L и С показаны на рисунке. Разметьте узлы, как показано на рис. 2.27 (выбрав Place, Netlist). После создания схемы дайте моделированию имя Multi и выполните анализ AC Sweep/Noise в диапазоне частот от 58 до 62 Гц для 101 точки. Вспомните, что мы не можем использовать курсор, если анализ выполнен для одной частоты 60 Гц, как в главе 2.

Рис. 14.35. Схема с несколькими источниками питания 


Проведите моделирование и получите графики I(C), IR(C) и II(C). Для оси X используйте линейный масштаб от 58 до 62 Гц. Теперь добавьте другую ось Y и получите IР(С). Эти графики показаны на рис. 14.36. При желании получите другие численные результаты, показанные на рис. 2.28. Для этого удалите графики, заменив их такими графиками, как I(L), IR(L), II(L) и IP(L). Разумеется, для этого вам потребуется достаточно много времени, и простота использования непосредственно PSpice вместо Capture станет особенно очевидной.

Рис. 14.36. К анализу схемы с тремя источниками питания 

Временные диаграммы для цепей переменного тока со многими источниками гармонического сигнала

Решим теперь предыдущую задачу, применяя компоненты VSIN вместо VAC для источников напряжения V>1, V>2 и V>3. При этом проводится исследование переходного процесса во временной области. Анализ сложнее и имеет некоторые ограничения, о которых мы скажем далее. Начните новый проект в Capture с именем tmulti и параметрами элементов из предыдущего примера: С=663 мкФ, L=7,96 мГн и R=3 Ом. Для напряжений источников используем V>1=20∠0° В, V>2=10∠-90° В (дважды поверните компонент, чтобы положительный полюс оказался внизу) и V>3=40∠5° В. Разметьте узлы, как показано на рис. 14.37, затем используйте для моделирования имя tmultis и выполните во временной области анализ для переходного процесса. Выберите время выполнения в 30 мс и максимальный размер шага в 30 мкс. Выполните моделирование и в Probe получите графики V(1), V(2) и V (3), как показано на рис. 14.38. Поскольку V(1), V(4) и V(3) источники напряжения, их диаграммы появляются с заданными начальными фазовыми углами, в отличие от напряжения V(2) в точке соединения трех компонентов С, L и R. Последнее в начальный момент равно V(3), но во время переходного процесса его фаза изменяется. На рисунке место, в котором V(2) пересекает горизонтальную ось в положительном направлении, отмечено курсором при t=16,296 мс. Поскольку V(1) пересекает ось при t=16,667 мс, то V(2) опережает его на 0,371 мс или на 8°.

Рис. 14.37. Анализ схемы с несколькими источниками во временной области


Рис. 14.38. Анализ во временной области для схемы с несколькими источниками питания


Отметим также, что начальный фазовый угол напряжения V(4), которое представляет собой V>2 на схеме, составляет + 90°. Его фазовый угол на схеме задан как -90°, но поскольку положительный полюс находится внизу, знак начального фазового угла изменяется. Файл псевдонимов для схемы показан на рис. 14.39. Посмотрим, как размечены полюса для каждого из источников напряжения. В частности V_V2 показан, как V2(+=0 -=4). Вспомним, что компонент VSIN был дважды повернут перед размещением в схеме.

>* Alias File:

>**** INCLUDING tmulti-SCHEMATIC1.net ****

>* source TMULTI

>R_R 2 4 3

>L_L 2 3 7.96mH

>С_С 1 2 663uF

>V_V3 3 0

>+SIN 0 40V 60Hz 0 0 45

>V _V2 0 4

>+SIN 0 10V 60Hz 0 0 -90

>V _V1 1 0 +SIN 0 20V 60 0 0 0

>**** RESUMING tmulti-schematic1-tmultis.sim.cir ****

>.INC "tmulti-SCHEMATIC1.als"

>**** INCLUDING tmulti-SCHEMATIC1.als **** .ALIASES

>R_R  R(1=2 2=4 )

>L_L  L(1=2 2=3 )

>С_С  С(1=1 2=2 )

>V_V3 V3(+=3 -=0 )

>V_V2 V2(+=0 -=4 )

>V_V1 V1(+=1 -=1 )

Рис. 14.39. Файл псевдонимов для схемы с несколькими источниками

Временные диаграммы гармонических токов

Не выходя из Probe, удалите графики напряжения и получите графики для каждого из токов схемы. Не забудьте показать условные направления для всех токов на схеме цепи. Рассмотрите временные диаграммы для токов конденсатора и катушки индуктивности после того, как они прошли начальный участок переходного процесса, чтобы определить правильные амплитуды и фазы. Не забудьте, что фактически нас интересует не переходной процесс для этой схемы, а скорее то, что мы могли бы видеть в лаборатории на экране осциллографа. Эти графики представлены на рис. 14.40. Обратите внимание, что ток через конденсатор I(C) проходит слева направо, ток I(L) — также слева направо, а ток через резистор I(R) направлен вниз. Рассмотрите файл псевдонимов, чтобы подтвердить это.

Рис. 14.40. Токи в ветвях схемы с несколькими источниками


В любой момент сумма токов в узле 2 должна быть равна нулю. С учетом направлений токов это отображается уравнением

>IС - IL - IR = 0.

В качестве упражнения найдите сумму токов в узле 2 при t=20 мс. Вы должны получить 0,32+7,74–8,04=0,02 А. Эта сумма не совсем равна нулю, так как процессы к этому моменту еще не полностью установились.