OrCAD PSpice. Анализ электрических цепей - [111]
Рис. 14.26. Экран Capture, показывающий действительную и мнимую составляющие напряжения
Убедитесь, что I(R1)=0,14 A, r(I(R1))=0,1 А и img(I(R1))=0,1 А. Удалите эти графики и убедитесь, что угол сдвига тока схемы IP(R1) относительно приложенного напряжения V>1, составляет 45°.
Полезно также рассмотреть перечень элементов (netlist) схемы. Панель в левой части экрана показывает различные файлы, связанные с этим проектом. Открыв файл ac2-schematic1, вы увидите список из трех компонентов (V, R и С) вместе с их узлами и значениями параметров (рис. 14.27).
Рис. 14.27. Схема и перечень компонентов, полученных в Capture
Два примера в начале этой главы познакомили нас с методами создания схемы в Capture и с автоматическим созданием программой схемного файла, с помощью которого выполняется моделирование. Очевидно, что процесс гораздо более утомителен и требует большего времени, чем просто использование команд PSpice в схемном файле для тех же целей. Это справедливо для всех задач и в этом целесообразность изучения программы PSpice до овладения созданием схем в Capture.
Полное сопротивление нагрузки, обеспечивающее максимальную передаваемую мощность
На рис. 2.9 главы 2 показан последовательный контур, предназначенный для определения полного сопротивления нагрузки, при котором в ней обеспечивается максимальная мощность. Используем Capture, чтобы создать новый проект maxpo для схемы, показанной на рис. 14.28. Параметры элементов: V>1=12 В (используем источник VAC), R>1=600 Ом, R>2=600 Ом, L>1=23,873 мГн и С>1=1,06 мкФ. Трижды поверните R>2 и C>1 так, чтобы ваш рисунок был похож на приведенный в этом примере. Пронумеруйте узлы, двигаясь по часовой стрелке от V>1, используя Place, Netlist. Для моделирования на PSpice выберите имя Maxsweep и в качестве типа анализа выберите AC Sweep/Noise. Вариация должна быть проведена для частотного диапазона от f=500 Гц до f=1500 Гц с использованием 1001 точки.
Рис. 14.28. Схема для определения максимальной мощности
Выполните моделирование и получите в Probe график I(R1) при линейной вариации частоты. Сравните ваши результаты с представленными на рис. 14.29. Обратите внимание, что при резонансной частоте f=1 кГц ток имеет максимальное значение 10 мА. Удалите этот график и получите график p(V(3)) для фазового угла напряжения на нагрузке (то есть на последовательном соединении R>2 и C>1). Убедитесь, что этот угол на резонансной частоте равен -14,04°, как показано на рис. 14.30.
Рис. 14.29. К определению максимальной мощности
Рис. 14.30. Фазовый угол напряжения на нагрузке
В качестве дополнительного упражнения удалите этот график и получите графики V(R1:1), V(L1:1), V(LI:2) и V(C1:1). Используйте курсор, чтобы найти значение каждого из этих напряжений при f=1 кГц. Сравните ваши результаты с показанными на рис. 14.31. Можете ли вы показать каждое из этих напряжений на схеме?
Рис. 14.31. Амплитуды напряжений при максимальной мощности
Обозначения токов и напряжений в Probe
Перед тем как выйти из Probe, поэкспериментируйте с другими временными диаграммами напряжения и тока. Обозначив через x некоторый компонент, найдите напряжения на различных компонентах, используя V(x:1) для напряжения в точке х:1 относительно земли, r(v(x:1)) — для действительной и img(V(x:1)) — для мнимой части этого напряжения. Используйте I(х), чтобы найти график тока, текущего от первого узла ко второму в компоненте x, r(I(x)) — для действительной и img(I(x)) — для мнимой части этого тока.
Последовательный резонанс
В предыдущем примере значения L и C были выбраны такими, чтобы обеспечить резонанс на частоте f=1 кГц. Во многих схемах резонансная частота неизвестна, и ее необходимо определить при анализе схемы. Создайте в Capture схему, подобную приведенной на рис. 2.10. Схема для проведения этого анализа показана на рис. 14.32. Параметры элементов: V>1=1 В (используется источник типа VAC), R>1=50 Ом, L>1=20 мГн, и С>1=150 нФ. Необходимо найти резонансную частоту. Откройте новый проект с именем resonant, создайте схему и разметьте узлы в соответствии с рисунком. Для моделирования выберем имя Ssweep и зададим тип анализа AC Sweep/Noise в диапазоне частот от 100 Гц до 5 кГц. Используйте 4901 точку, получив результат для каждого целочисленного значения частоты.
Рис. 14.32. Последовательный резонансный контур
В Probe получите график I(R1), затем напряжение на конденсаторе V(C1:1) с отдельной осью Y. Сравните ваши результаты с приведенными в главе 2 и на рис. 14.33.
Рис. 14.33. АЧХ тока и напряжения на конденсаторе при резонансе
Удалите эти графики и вторую ось Y и получите следующие графики:
1) v(v(3)), действительную составляющую напряжения на узле 3 (между L>1 и C>1); это напряжение становится нулевым при f>0.
2) img(v(3)), мнимую составляющую этого же напряжения, которая достигает отрицательного минимума в -7,238 В при f>0.
3) img(v(2)), мнимую часть напряжения на последовательном соединении L>1 и С>1; это напряжение равно нулю при f>0.
Эти графики приведены на рис. 14.34.
Рис. 14.34. Напряжение на конденсаторе и на LC-цепи при резонансной частоте
Цепи переменного тока с несколькими источниками