Очень общая метрология - [9]

Шрифт
Интервал

Нормальный инженер относится к метрологии как к чему-то важному, но проблемы создающему не каждый день. Берем штангенциркуль и меряем. Ну, можно еще сказать два слова о нониусе. Так и живет он себе, «счастливый от ерунды» (No МВ), до момента, когда-либо обнаруживает, что точности прибора не хватает, либо что токарь делает точно по чертежу, а ОТК не пропускает. Причем в одной смене брак стабильно 5 %, а в другой — стабильно 30 %, и в одной отклонение размера все время в одну сторону, а в другой — куда попало. Или летом брак один, а зимой другой, когда дождик — один, когда сухо — другой и так далее. Серьезная проблема с метрологией у технаря возникает, если он начинает заниматься совсем новым объектом, например «измерять» царапину на крышке консервной банки, которая нужна для того, чтобы банка открывалась. Глубина царапины должна выдерживаться с высокой точностью, и с тем более высокой точностью измеряться. И не только глубина, но и профиль и главное — что такое глубина, если не известен профиль, а? Вообще многие современные красивые штучки базируются на строгой технологии и, часто, на более совершенной метрологии.

Физик относится к метрологии с большим пиететом, нежели инженер — ему чаще, чем технарю, для решения своих задач приходится решать новые метрологические задачи. Обычно это происходит, когда приходится измерить некоторую величину на краю освоенного диапазона — либо если она очень мала, либо очень велика, либо ее надо измерить с очень высокой точностью, либо в каких-то необычных условиях. Ниже мы обсудим это подробнее.

И в физике, и в технике по мере развития области и постановки новых либо продвижения старых задач, вопросы измерений (точности, диапазона, необычных условий) возникают всегда. С другой стороны, увеличение точности измерений само по себе достаточно часто приводит к новым результатам. Хотя тут надо быть осторожным — увеличение количества данных иногда (особенно при не вполне корректной обработке или предварительном отборе) позволяет обнаружить «закономерности» и там, где их нет.

В технике увеличение точности измерений позволяет применять более «строгие» технологии, которые, в свою очередь, часто позволяют упростить и удешевить конструкцию. Естественно, возможность точных измерений — не единственное условие применения строгих технологий. Примеры применения таких технологий — гибкие заушники очков без винтов и других узлов вращения, вообще замена узлов вращения гибкими элементами, банки с крышкой с линией разрыва, приклеенные крышечки на «ванночках» с продуктами.

В социологии и психологии, как уже отмечалось, метрология занимает большее место, чем в физике и технике — просто потому, что большого объема теорий (как в физике) или большого объема конструирования (как в технике) в них нет. Ну и остается мерить все подряд, то есть что заказчику взбредет в голову. Или что считает важным сам социолог, если у него каким-то чудом остаются силы на науку и если удалось получить грант. Важность метрологии в этом случае примерно такова, как в физике — то есть она важна для понимания этого мира. Улетевший не туда космический корабль можно всуе не упоминать — власть, понятное дело, не только не допускает социологов к старовому ключу, но и вообще в их советах не нуждается. Был в истории России момент, когда граждане реально кого-то там выбирали, тогда рейтинги и были нужны. Потом социологические данные какое-то время были нужны жуликам и манипуляторам (http://www.hrights.ru/text/sob/index.htm, http://www.koob.ru/paramonov_kirichenko/metodi_falsifikacii).

Но те времена прошли, вертикаль построена и стоит на изумление соседям и оторопь россиянам.

Метрологические проблемы в психологии представляются еще более важными, ибо на основе психологических измерений (тестов) люди делают какие-то выводы о себе и о других и могут предпринимать какие-то реальные действия.

Общие вопросы измерений

Когда измерение становится проблемой

Во-первых, когда предполагается измерять какую-то новую величину. Тут есть тонкость — что значит «новая величина»? Физики и инженеры считают, что существует то, что можно измерить. В величину, которую мы раньше не измеряли — в каком смысле она существовала? В физике и технике величина может быть определена формулой, функцией. Пусть например мы давно измеряем ток и напряжение, но не разу не измеряли мощность, хотя и знаем, что это такое, умеем написать уравнение. Можно поставить задачу — сделать прибор, измеряющий мощность. Эта задача может быть решена по крайней мере двумя принципиально различными способами: аналоговым — посредством такого беленького вращающегося диска (узнаете?) и цифровым — дискретизацией функций «напряжение от времени» и «ток от времени» с перемножением и интегрированием по периоду. Или по какому-то другому времени, если нам нужен счетчик потребления электроэнергии.

Аналогичные ситуации возможны с любой величиной, для которой написано уравнение, хотя вовсе не всегда физикам нужен специальный прибор для измерений, «реализующий» эту формулу в железе и кремнии. В социологии ситуация иная — величины задаются не формулами, а либо согласованным способом диагностирования (анкетами), либо неким социолого-филологическим консенсусом, то есть близким пониманием самих исследователей. Степень такого консенсуса может быть разной, от полного единогласия до полного непонимания, то есть наличия двух противоречащих одно другому пониманий. Соответственно, в этом случае возникает проблема согласования пониманий, которой нет или почти нет в физике и технике. Но и при наличии полного взаимопонимания (или если исследователь один и ни с кем ничего согласовывать не собирается) остается задача превращения интуитивного понимания исследователя в «индикаторы» — то есть те или иные числовые данные, которые мы согласились считать ответами на те проблемы, которые интересовали или мучили социолога или его заказчика.


Еще от автора Леонид Александрович Ашкинази
Уровень ноль

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Копирайт

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Инструкция для путешественника во времени

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Все, всегда

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Исход

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Путешествие восьмое, или Как Трурль обеспечил бесконечность существования Вселенной

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Получение энергии. Лиза Мейтнер. Расщепление ядра

Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль.


Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.