Очень общая метрология - [38]

Шрифт
Интервал

Погрешности: философия

На интуитивном уровне мы понимаем, что знание наше во многих случаях не точно. Можно осторожно предположить, что точным наше знание вообще может быть только при дискретной шкале. Можно точно знать, сколько шариков в мешке, но нельзя — каков их вес, можно точно знать, какая оцека, но нельзя — какие знания. Можно точно знать, было или нет (и то не всегда), но нельзя — насколько любит.

Это тривиально, но от тривиального до непостижимого — что в жизни, что в метрологии — один шаг. Как оценить точность наших знаний? Если мы знаем точное значение — это легко; но если мы знаем точное, то нам не надо оценивать точность не точного. В реальной ситуации точного значения мы не знаем, и не факт, что это самое точное значене вообще существует. Что если реальная величина слегка изменяется со временем, а мы, производя измерения на коротком интервале и с ограниченной точностью, просто этого не замечаем. Что в этом случае «точное значение»?

Поэтому, употребляя всуе слово «точность» и рассуждая на эту тему, надо понимать некоторую условность всех этих рассуждений. Тем не менее физики и инженеры, занимаясь измерениями, не вдаются в философию и правильно делают. Потому что за каждым их метрологическим действием стоит огромный (часто — вековой) опыт и накопленная касающаяся этого объекта или объектов этого класса информация. Другое дело, что никакой опыт не гарантирует от ошибок.

Тут уместно следующее замечание. В большинстве книг и пособий по метрологии говорится, что однократных измерений не бывает, что любое измерение нужно повторять многократно. Между тем на практике большинство измерений делается один раз. Дело в том, что за спиной измерителя стоит — и часто огромный — опыт. Например, измеряя напряжение в сети хорошим поверенным вольтметром мы получаем 215 вольт и нам и в голову не приходит перемерять. Потому что мы прекрасно знаем, что должно быть немного меньше 220 и примерно знаем, сколько в какое время суток в нашем районе.

В старой советской терминологии различали значение истинное (сокровенное, скрытое от нашего слабого разума, доступное только Великому Метрологу) и действительное — то, к которому мы подползаем в процессе познания истины. Странно, что этого буржуазно-философского извращения не заметили борцы за чистоту великого учения! На растленном Западе, не вдаваясь в философию, называют то, к чему мы приближаемся — условным значением.

В советской терминологии различали погрешность, вызванную объективными обстоятельствами и ошибку, вызванную субъективными обстоятельствами. Это деление условно, например субъективное дрожание рук, увеличивающее ошибку, вполне объективно — причина его известна (паленая водочка), да и параметры поддаются измерению и управлению (правильный опохмел). Другой пример — при визуальном определении момента прохождения звезды через меридиан объективно существует индивидуальная погрешность, так называемая «личная разность».

Погрешности: модели

Когда мы что-то измеряем, имеющуюся к моменту начала измерений информацию (как осознанная, так и неосознанная) удобно представить в виде моделей объекта или явления. Модель «нулевого уровня» — это модель наличия величины. Мы верим в то, что она есть — раз ее измеряем! Модель «первого уровня» — это модель постоянства значений и независимости от пространства и прочих факторов, например температуры катода от условий эксплуатации, от дрейфа параметров, толщины покрытия в некоторых катодах и далее. В некоторых случаях мы знаем, что это упрощение и идем на него, если нам не нужна высокая точность. В иных случаях мы не знаем этого, и работаем с простой моделью, пока не наткнемся на противоречие. Тогда мы привлекаем более сложные зависимости. Причем какие именно зависимости привлекать и вообще привлекать их или просто тщательнее вести измерения и уменьшать разброс показаний — вопрос интуиции и опыта человека, эти процедуры трудно формализовать.

Вот пример исключения параметра при упрощении модели. Мы измеряем диаметр цилиндра и не всегда проверяем эллиптичность, отклонения от цилиндричности (зависимость диаметра от угла). Потому что промерив тысячу этих цилиндриков, мы знаем, что на этом оборудовании и в этом техпроцессе получается то, у чего для дальнейшего применения нужно контролировать диаметр и не нужно — эллиптичность. В другой ситуации может оказаться любое из трех других «иначе».

Метрологу (если он хочет, чтобы инженеры и физики смотрели на него с уважением) желательно понимание того, как делается вещь, что может и чего не может быть, желательно наличие в голове модели техпроцесса. Равным образом, желательно наличие там же модели дальнейшего бытования вещи, того, как, в каких условиях, взаимодействуя с чем она будет применяться. Полезет ли этот вал в это отверстие, пройдет ли этот перед в эти двери, не создаст ли излучение этого словоблуда-препода недопустимую радиоэлектронную помеху его очаровательной соседке по салону Боинга. Вы спросите, издевательски лыбясь, не означает ли это, что метролог должен знать все? С присущей мне прямотой и честностью отвечу — да.


Еще от автора Леонид Александрович Ашкинази
Уровень ноль

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Копирайт

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Инструкция для путешественника во времени

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Все, всегда

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Исход

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Путешествие восьмое, или Как Трурль обеспечил бесконечность существования Вселенной

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Гидросфера

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Получение энергии. Лиза Мейтнер. Расщепление ядра

Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.