Очень общая метрология - [37]
Эталон количества вещества
Это моль, который в общем-то дублирует эталон массы, но сохраняется как понятие для удобства в основном химических вычислений. Отдельного эталона моля не существует. По определению, это такое количество вещества, которое содержит столько молекул, сколько атомов в 12 граммах углерода-12, то есть попросту — число Авогадро. Метрологи при упоминании моля морщатся и скорее всего еще при нас он будет исключен из списка основных единиц.
Эталон температуры
В физике есть несколько разных «температур», высокая метрология знает одну — термодинамическую температуру. Это та самая, которя однозначно связана с энергией через постоянную Больцмана (поэтому физики часто измеряют температуру в единицах энергии — Джоулях, или, того страшнее, в электронВольтах:) Она же входит в универсальный газовый закон. Поскольку для температуры нет естественного эталона, шкала температур условна и таких шкал много. Наиболее распространены сегодня шкалы Кельвина (наука), Цельсия (быт, Европа), Фаренгейта (быт, Америка). В некоторых регионах используется более простая шкала температур с тремя температурами — холодно, терпимо, жарко. На шкале Кельвина ноль совпадает с абсолютным нулем, а реперная точка — тройная точка воды. Значение температуры в этой точке выбрано так, чтобы деление шкалы (Кельвин) совпадал с делением шкалы Цельсия (градус Цельсия), для упрощения пересчета. Другие реперные точки — точки фазовых переходов чистых веществ, интерполяция между точками делается термометрами сопротивления и газовым термометром.
Эталон тока
Исторически эталонами электрических величин сначала были ток (через гальванопроцесс и вес осадка) и сопротивление (через сопротивление ртутного цилиндрика), напряжение определялось законом Ома, а передавалось — особо стабильным гальваническим элементом («нормальный элемент»).
Позже ампер определили через взаимодействие токов и эталоном стали токовые весы, в которых измеряется сила притяжения между двумя катушками с «эталонируемым» током, а эталоном напряжения стал нормальный элемент.
Ну а потом, как и следовало ожидать (скажем мы теперь, растопырив пальцы) произошел переход к квантовым стандартам. А именно, было показано, что при увеличении тока, протекающего через переход сверхпроводник-диэлектрик-сверхпроводник, облучаемый СВЧ с некоторой частотой, напряжение на переходе увеличивается скачками величиной, зависящей от этой частоты, постоянной Планка и заряда электрона (эффект Джозефсона). Поскольку частота измеряется с высокой точностью, возникла возможность построения квантового эталона напряжения.
Далее, было показано, что на переходе металл-диэлектрик-полупроводник при низких температурах имеет место квантовый эффект Холла — при увеличении магнитного поля сопротивление изменяется скачками, зависящими только от постоянной Планка и заряда электрона. Таким образом, появляется возможность построения квантового эталона сопротивления. В обозримом будущем это, по-видимому, и произойдет. Соответственно, при наличии квантового эталона напряжения и тока, на их основе может быть дано новое определение ампера.
Эталон силы света
Свет — это электромагнитное излучение в диапазоне непосредственного восприятия человеком. Поэтому в технике и, соответственно, метрологии, ему уделяется большее внимание. Световых единиц, как известно, четыре — световой поток, сила света, светимость и яркость. С точки зрения физики, никаких новых единиц и новых эталонов для описания света не нужно вообще, это соответственно, Вт, Вт/стер, Вт/м>2 и Вт/ м>2стер, и смысл величин ясен из размерностей. Но в этом случае нам нужны измерители мощности и энергии, с достаточной точностью измеряющие эти величины в оптическом диапазоне. На протяжении значительной части истории техники таким прибором, весьма чувствительным, хотя пригодным только для сравнительных измерений, был глаз человека. Система оптических величин базировалась на эталоне силы света, но сравнение силы света эталона и исследуемого источника проводилось «на глаз». Остальные единицы определялись через силу света и все четыре именовались, соответственно, люмен, кандела, люкс и кандела/м>2. Кандела эталонировалась излучением абсолютно черного тела при фиксированной температуре, потребность перевода «ваттных» единиц в оптические и обратно повлекла стандартизацию так называемой «кривой видности» — стандартной характеристики чувствительности глаза. В настоящее время кандела уже определяется через ватт, хотя как единица сохраняется по инерции. По-видимому, в обозримом будущем система единиц, базирующаяся на канделе, будет понемногу выходить из употребления.
В заключение раздела отметим, что бегать с каждой ученической линейкой в гости к эталону метра не удастся. Поэтому эталоны и средства измерений для каждой величины представляют пирамидальную структуру высокой сложности и стоимости. На вершине которой находятся государственные эталоны основных величин, много миллионные установки, изолированные комнаты, сложнейшие процедуры, ниже — рабочие эталоны разных классов, потом рабочие средства измерений, и наконец — напольные весы, на шкалу которых с ненужным трепетом смотрит лучшая часть человечества.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.