Объясняя мир. Истоки современной науки - [123]

Шрифт
Интервал

, но при этом нужно, чтобы расстояние между фокусом и точкой наиболее тесного сближения с кривой (1– e) a оставалось бы конечным, так что мы задаем:



где l остается постоянной, в то время как a стремится к бесконечности. Так как e здесь предельно приближается к единице, малая полуось будет выражаться как:



Принимая, что z>0 = a, и используя эту формулу для b², приведем уравнение эллипса к следующему виду:



Из левой части вычитаем слагаемое a²/a², а из правой – равную ему единицу. Затем обе части умножаем на a и получаем:



В случае, когда a значительно больше x, y или l, можно опустить первый член, и уравнение приходит к виду:



Это то же самое уравнение, которое мы выше вывели для описания движения горизонтально выстреливаемой пули, если мы примем, что:



так что фокус параболы F находится на расстоянии l = v²/2g ниже начальной позиции пули (см. рис. 19).


Рис. 19. Параболическая траектория пули, которой стреляют горизонтально с возвышенности. Точка F – фокус параболы.


Параболы, как и эллипсы, можно рассматривать как конические сечения, но в случае параболы плоскость, которой рассекается конус, параллельна поверхности конуса. Принимая, что уравнение конуса, центральная ось которого совпадает с осью z, имеет вид √(x² + y²) = α (z − z>0), а уравнение плоскости, параллельной данному конусу, просто y = α (z − z>0), где z>0 – произвольная константа, кривая пересечения конуса и плоскости удовлетворяет равенству:



Сокращая члены α²z² и α²z>0², переходим к виду:



что совпадает с уже полученной нами формулой в случае, когда z>0 = l/α². Обратите внимание, что парабола любой формы может быть получена сечением любого конуса при любом значении углового коэффициента α, потому что форма параболы (но не ее расположение или ориентация) целиком зависит лишь от аргумента l, выражаемого в единицах длины. Нам не нужен никакой безразмерный параметр наподобие α или эксцентриситета эллипса.

27. Вывод закона преломления света по аналогии с теннисным мячиком

Декарт попытался вывести закон преломления света, основываясь на предположении о том, что луч света преломляется при переходе из одной среды в другую подобно тому, как меняет направление движения теннисный мячик, пробивающий экран из тонкой ткани. Допустим, что такой мячик ударяется о ткань наклонно со скоростью v>A. При этом он потеряет часть скорости и после прохождения сквозь ткань будет иметь скорость v>B < v>A, но мы не ожидаем, что это столкновение приведет к изменению компоненты скорости мячика, направленной вдоль экрана. Можно нарисовать прямоугольный треугольник, катеты которого будут соответствовать перпендикулярной и параллельной компонентам начальной скорости мячика по отношению к экрану, а гипотенуза будет обозначать полную скорость v>A. Если исходная траектория расположена под углом i к перпендикуляру к поверхности, тогда компонента скорости параллельно ткани будет равна v>A sin i (см. рис. 20). Аналогично, если после пробивания преграды путь мячика идет дальше под углом r к тому же перпендикуляру, то параллельная поверхности компонента скорости составит v>B sin r. Вслед за Декартом предполагая, что пробивающий ткань мячик меняет лишь поперечную, а не продольную скорость, получаем:



и, следовательно,



где n является отношением



Рис. 20. Скорости теннисного мячика. Горизонтальная линия обозначает экран из ткани, которую пробивает теннисный мячик с начальной скоростью v>A и скоростью после события v>B. Прямые линии со стрелками показывают масштаб и направления этих скоростей. На этом чертеже путь мячика претерпевает излом, становясь ближе к перпендикуляру к поверхности, как это происходит в случае, когда луч света попадает в более плотную среду. Это показывает, что пробивание мячиком тканевого экрана явно уменьшает компоненту его скорости, направленную вдоль поверхности, в противоположность тому, что предполагал Декарт.


Уравнение (1) известно как закон Снеллиуса, верно описывающий случай преломления света. К несчастью, аналогия между светом и теннисным мячиком теряет смысл при рассмотрении уравнения (2), дающего нам величину n: дело в том, что для теннисных мячей v>B меньше, чем v>A, и уравнение (2) дает n < 1, тогда как в случае, когда свет проникает из воздушной среды внутрь стекла или воды, получается n > 1. Плохо и другое: нет оснований полагать, что для теннисного мячика отношение v>B/v>A действительно не зависит от углов i и r, поэтому пользы от уравнения (1) в таком виде мало.

Как доказал Ферма, когда свет проходит границу между средой, где его скорость равна v>A, и другой средой, где скорость равна v>B, показатель преломления n в действительности равен отношению v>A/v>B, а не v>B/v>A. Декарт не знал, что скорость света конечна, и предложил необоснованное объяснение тому, почему n больше единицы в том случае, когда среда A – воздух, а среда B – вода. Для задач XVII в., таких как декартова теория радуги, это было неважно, так как n считался не зависящим от угла падения, что хоть и не верно для мячиков, верно для света, и к тому же значение показателя бралось из наблюдений, а не выводилось на основе измерений скорости света в различных средах.


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Первые три минуты

В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
Почему Холокост

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Мы - поколение великого потопа

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Две загадки лунной дилогии

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Тайна субъективных переживаний поддается разгадке

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


И по Арсеньеву прошлась 'Лубянская лапа ЧЕКА'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Об опыте Стефана Маринова

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.