Объясняя мир. Истоки современной науки - [122]

Шрифт
Интервал

, поэтому в течение времени t, за которое он совершает νt оборотов, полное пройденное расстояние составляет d = 2πrνt, и значит, его скорость равняется d/t = 2πνr. Подставляя это выражение в формулу энергии вращательного движения, получаем:



Поделив обе части на m и на 1 + ζ, используем закон сохранения энергии и получим уравнение:



Это та же самая зависимость между скоростью и перепадом высоты d = h>0 – h, которая справедлива и для свободно падающего тела, с тем лишь отличием, что g заменяется на g/(1 + ζ). Если эту замену не учитывать, зависимость скорости шарика, катящегося вниз по наклонной плоскости, от проходимого перепада высоты та же самая, что и для тела в свободном падении. Это означает, что, изучая скатывание шаров по наклонной плоскости, можно доказать, что и свободно падающие тела движутся равноускоренно. Однако таким образом нельзя рассчитать ускорение, если не учитывать реальное значение коэффициента 1/(1 + ζ).

Путем сложных доказательств Гюйгенс сумел выразить время, которое требуется маятнику длины L, чтобы переместиться с одной стороны на другую с небольшим углом, равенством:



Полученный Гюйгенсом результат означал, что это время в π раз больше, чем то время, которое нужно падающему телу, чтобы пройти расстояние d = L/2.

26. Параболические траектории

Предположим, что пулю или снаряд выстреливают горизонтально со скоростью v. Если не учитывать сопротивление воздуха, пуля будет продолжать лететь горизонтально с одной и той же скоростью и одновременно двигаться равноускоренно вертикально вниз. Поэтому спустя время t после выстрела она пролетит расстояние по горизонтали x = vt и потеряет высоту z, пропорциональную квадрату времени. Принято выражать это формулой z = gt²/2, где g = 9,8 м/с за секунду – эту константу измерил Гюйгенс уже после кончины Галилео Галилея. Поскольку t = x/v, значит:



График значений этого уравнения, в котором одна координата пропорциональна квадрату другой, имеет вид параболы.

Обратите внимание, что если ружье было расположено на высоте h над землей, то пуля пролетит по горизонтали расстояние √(2v²h/g) до того, как упадет на землю в момент, когда вертикальный перепад высоты z сравняется с h. Даже не зная значений v или g, Галилей мог убедиться, что путь, проходимый пулей, представляет собой параболу, измеряя расстояния d для различных начальных высот ствола ружья h и проверяя, что d всегда остается пропорциональным квадратному корню из h. Неизвестно, проделывал ли Галилей такие эксперименты на самом деле, но есть свидетельства, что в 1608 г. он провел близкий по смыслу эксперимент, о котором мы кратко говорили в главе 12. В нем шарик скатывался по наклонной плоскости на стол с различных начальных высот H, затем свободно катился по оставшейся горизонтальной поверхности стола и, наконец, слетал с его края. Как показано в техническом замечании 25, скорость шарика в момент достижения им нижней точки наклонной плоскости равна:



где g – обычное значение 9,8 м/с за секунду, а ζ – отношение энергии вращения шарика к его кинетической энергии, постоянная, зависящая от распределения массы внутри катящегося шарика. Для твердотельного шара равномерной плотности ζ = 2/5. Ту же самую скорость шарик имеет и в тот момент, когда соскакивает с края стола, поэтому горизонтальное расстояние, которое шарик после этого пролетит за то время, которое ему потребуется, чтобы упасть на глубину h, будет равно:



Галилей не упоминал поправку на вращательное движение, выражаемую коэффициентом ζ, но он мог подозревать, что наличие такой поправки уменьшает горизонтальное расстояние, которое преодолевает шар, поскольку он не стал сравнивать это расстояние с величиной d = √(Hh), которую можно было бы ожидать, не учитывая ζ, а лишь проверял тот факт, что для фиксированной высоты стола h пройденное расстояние d было действительно пропорционально √(H) с точностью до нескольких процентов. По каким-то причинам Галилей так ни разу и не опубликовал результаты этого эксперимента.


Для множества задач в астрономии и математике удобно представлять параболу как предельный частный случай эллипса, один фокус которого находится очень далеко от другого. Как демонстрировалось в техническом замечании 18, уравнение эллипса с большой осью 2a и малой осью 2b таково:



В нем мы для удобства выполнения дальнейшего анализа заменили координаты x и у, которые использовали в техническом замечании 18, на z – z>0 и x, соответственно, где z>0 – произвольно выбираемая константа. Центр этого эллипса находится в точке с координатами z = z>0 и x = 0. Как мы видели в замечании 18, фокус эллипса находится в точке z – z>0 = −ae, x = 0, где e – эксцентриситет, определяемый как e² ≡ 1 − b²/a², а точка, в которой кривая находится ближе всего к этому фокусу, расположена в z − z>0 = −a и x = 0. Удобнее обозначить именно эту точку наибольшего сближения с фокусом координатами z = 0 и x = 0, выбрав значение z>0 равным a, и в этом случае ближайший фокус окажется расположен от нее на расстоянии z = z>0 – ea = (1 – e) a. Теперь мы хотим сделать a и b бесконечно большими, так что противоположный фокус эллипса удалится в бесконечность и у нашей кривой не будет определенной максимальной координаты


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Первые три минуты

В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
Тайны тибетской медицины

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Почему Холокост

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Мы - поколение великого потопа

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Две загадки лунной дилогии

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Тайна субъективных переживаний поддается разгадке

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Об опыте Стефана Маринова

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.