Объясняя мир. Истоки современной науки - [103]
На первом шаге необходимо рассчитать внутренний угол θ (тета) каждой из n вершин n-стороннего правильного многоугольника. Проведем лучи из центра многоугольника к каждой из его вершин. В результате многоугольник окажется разделен на n треугольников. Поскольку сумма углов треугольника равна 180° и в каждом из этих треугольников есть по два угла, равных θ/2, то угол при третьей вершине, совпадающей с центром многоугольника, равняется 180° – θ. Так как n таких углов должны составлять полный угол 360°, то n (180° – θ) = 360°. Решая это уравнение, получаем:
К примеру, для равностороннего треугольника имеем: n = 3, поэтому θ = 180° – 120° = 60°, тогда как для квадрата n = 4, и θ = 180° – 90° = 90°.
На втором шаге представим себе, что мы отрезали от нашего многогранника все грани, ребра и вершины, кроме тех, которые примыкают к какой-то одной выбранной вершине. Теперь то, что получилось, мысленно поставим на плоскость и «раздавим», нажав на эту вершину. Теперь N многоугольников, которые смыкались (были смежными) в этой вершине, окажутся лежащими на плоскости, но между ними должно остаться пустое место – в противном случае, если бы они покрывали полный угол, N многоугольников формировали бы слитную плоскую фигуру. Поэтому очевидно, что справедливо неравенство: Nθ < 360°. Подставив вместо θ приведенную выше формулу и поделив обе части неравенства на 360°, получаем:
или, что то же самое (если обе части разделить на N):
Учтем, что должно выполняться условие n ≥ 3, поскольку это минимальное количество вершин для многоугольника, и также должно выполняться неравенство N ≥ 3, так как иначе в многограннике не оставалось бы места между смежными при вершине многоугольными гранями (например, для куба n = 4, потому что грани квадратные, а N = 3). Поэтому вышеприведенное неравенство не позволяет ни отношению 1/n, ни отношению 1/N быть слишком малым, например, 1/2 – 1/3 = 1/6. Соответственно, ни n, ни N не могут быть равными или больше 6. Зная это, легко проверить все возможные комбинации целых чисел в диапазонах 5 ≥ N ≥ 3 и 5 ≥ n ≥ 3 на соответствие неравенству и обнаружить, что есть только пять таких комбинаций:
(В случаях, когда n равняется 3, 4 и 5, мы имеем стороны правильного многогранника, которые являются равносторонними треугольниками, квадратами и пятиугольниками соответственно.) Именно эти значения N и n присутствуют в тетраэдре, октаэдре, икосаэдре, кубе и додекаэдре.
Вот и все, что доказал Евклид. Но он не доказал, что существует лишь по одному правильному многограннику для каждой возможной пары n и N. Теперь мы пойдем дальше Евклида и покажем, что для каждой пары значений n и N мы получим по единственной комбинации других свойств многогранника: F – количества граней, E – количества ребер, и V – количества вершин. Как мы видим, есть три неизвестные величины, и значит, чтобы их найти, нам потребуется три уравнения. Чтобы вывести первое, отметим, что общее количество сторон всех многоугольников, образующих поверхность многогранника, равняется nF, но при этом каждая из Е граней является общей границей двух соседних многоугольников, поэтому:
Также учтем, что N граней пересекаются в каждой из V вершин, и притом каждое из E ребер соединяет две вершины, так что:
И наконец, есть и еще одно, менее явное, соотношение между величинами F, E и V. Чтобы его вывести, нужно принять дополнительное допущение – пусть наш многогранник является односвязным, то есть любой путь, который можно проложить между двумя различными точками его поверхности, можно непрерывно преобразовать в любой другой путь между теми же самыми точками. Это условие выполняется, например, для куба и тетраэдра, но не для многогранника (неважно, правильного или нет), который получили, разместив его вершины и грани вдоль поверхности тора. Существует сложная теорема, которая доказывает, что любой односвязный многогранник можно получить, если последовательно добавлять новые ребра, грани и/или вершины к тетраэдру, а потом сжать получившуюся фигуру до нужной формы. Зная об этом, мы покажем, что любой односвязный многогранник (правильный или неправильный) удовлетворяет равенству:
Легко проверить, что равенство удовлетворено для тетраэдра, в случае которого F = 4, E = 6 и V = 4, поэтому в левой части уравнения имеем: 4–6 + 4 =2. Если теперь мы добавим к любому многограннику ребро, секущее какую-либо из его граней от одного ребра до другого, то у нас добавится одна дополнительная грань и две дополнительные вершины, а значит, величины F и V увеличатся на единицу и двойку, соответственно. Но оба из прежних ребер, в которые упирается новое ребро, при этом еще окажутся разбиты на два, и поэтому E увеличится на 1 + 2 =3, и выходит, что соотношение F – E+ V останется неизменным. Точно так же, если мы добавим новое ребро, которое пролегает между какой-либо вершиной и точкой, принадлежащей одному из имеющихся ребер, то мы увеличим
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Книга для чтения содержит иллюстративные примеры к принципам подготовки курсовых работ, взятые из текстов курсовых работ по направлению «Международные отношения». Теоретическое объяснение сопровождается фрагментами, при анализе которых студенты учатся не только выявлять и употреблять клише научного стиля речи, но и продуцировать собственные тексты с опорой на имеющиеся образцы.
Сегодня искусственный интеллект меняет каждый аспект нашей жизни — ничего подобного мы не видели со времен открытия электричества. Но любая новая мощная технология несет с собой потенциальные опасности, и такие выдающиеся личности, как Стивен Хокинг и Илон Маск, не скрывают, что видят в ИИ возможную угрозу существованию человечества. Так стоит ли нам бояться умных машин? Матчи Гарри Каспарова с суперкомпьютером IBM Deep Blue стали самыми известными в истории поединков человека с машинами. И теперь он использует свой многолетний опыт противостояния с компьютерами, чтобы взглянуть на будущее искусственного интеллекта.
Самые необычные природные явления: брайникл, фата-моргана, прибрежное капучино, огни Святого Эльма, шаровая молния, огненная радуга, огненный вихрь, двояковыпуклые облака, красные приливы, световые столбы, волны-убийцы.
Нам предстоит познакомиться с загадочным племенем рудокопов, обитавших около 2–4 тысячелетий назад в бассейне реки Россь (Западная Белоруссия). Именно этот район называл М. В. Ломоносов как предполагаемую прародину племени россов. Новые данные позволяют более убедительно обосновать и развить эту гипотезу. Подобные знания помогают нам лучше понять некоторые национальные традиции, закономерности развития и взаимодействия культур, формирования национального характера, а также единство прошлого и настоящего, человека и природы.http://znak.traumlibrary.net.
Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.