Объясняя мир. Истоки современной науки - [102]

Шрифт
Интервал

1. Теорема Фалеса[25]

Теорема Фалеса – хороший пример того, как, рассуждая в понятиях геометрии, можно прийти к неочевидному выводу о свойствах окружностей и треугольников. Фалес или кто-либо другой был первым, кто доказал эту теорему, для нас она представляет интерес, так как демонстрирует, что древние греки знали о геометрии до Евклида.

Рассмотрим любую окружность. Пусть прямая пересекает ее по диаметру. Точки пересечения этой прямой с окружностью обозначим A и B. Выберем в любом месте окружности точку P, не совпадающую ни с A, ни с B, и соединим точки A и B с точкой P отрезками. Диаметр AB и отрезки AP и BP образуют треугольник ABP. Теорема Фалеса гласит, что такой треугольник всегда является прямоугольным, то есть его угол при вершине P всегда равен 90°.

Хитрость в доказательстве этой теоремы заключается в том, что необходимо из центра C окружности провести в точку P радиус CP. При этом треугольник ABP окажется разделен на два треугольника: ACP и BCP (см. рис. 1). Оба эти треугольника являются равнобедренными, то есть такими, у которых две стороны равны. В треугольнике ACP стороны CA и CP являются радиусами окружности и, по определению окружности, равны (будем обозначать стороны треугольника по точкам, которые они соединяют). Аналогично в треугольнике BCP равны стороны CB и CP. В равнобедренном треугольнике углы, противолежащие равным сторонам, равны между собой, поэтому угол α (альфа) между сторонами AP и AC равен углу между сторонами AP и CP, а угол β (бета) между сторонами BP и BC равен углу между сторонами BP и CP. Сумма углов любого треугольника равна удвоенному прямому углу[26], или, как сейчас принято говорить, 180°, поэтому если в треугольнике ACP третий угол между сторонами AC и CP обозначить α′ и точно так же обозначить β′ угол между сторонами BC и CP в треугольнике BCP, то будут верны равенства:

2α +α' = 180°; 2β+β' = 180°

Сложив оба равенства и переставив слагаемые местами, получим:

2(α + β)+ (α' + β') = 360°.

Учтем, что α′ + β′ – это развернутый угол между сторонами AC и BC, то есть такой угол, лучи которого образуют отрезок прямой линии. Его величина составляет 180°, поэтому:

2(α + β) = 360° − 180° = 180°.

Следовательно, α + β = 90°. Но если посмотреть на рисунок 1, то легко увидеть, что угол α + β – это угол между сторонами AP и BP в исходном треугольнике ABP, значит, он является прямоугольным треугольником, что и требовалось доказать.


Рис. 1. Доказательство теоремы Фалеса. Теорема утверждает, что для любой взятой на окружности точки P угол между отрезками, проведенными из этой точки к концам произвольного диаметра AB, будет прямым.


2. Платоновы тела

В рассуждениях Платона о природе вещества центральное место занимает класс геометрических тел, известных как правильные многогранники, которые также известны как платоновы многогранники. Правильные многогранники можно рассматривать как трехмерную аналогию правильных многоугольников в планиметрии, и в определенном смысле они строятся из правильных многоугольников. Правильный многоугольник – это плоская фигура, ограниченная n одинаковыми отрезками, имеющая n вершин, причем углы, образуемые соседними сторонами при каждой вершине, равны. Например, правильными многоугольниками являются равносторонний треугольник (треугольник, все стороны которого равны) и квадрат. Правильный многогранник – это объемное тело, ограниченное одинаковыми правильными многоугольниками, причем все его вершины представляют собой равные телесные углы, стороны которых образованы N равными многоугольниками-гранями.

Самый привычный пример правильного многогранника – это куб. Куб образуют шесть одинаковых граней-квадратов, в каждой из его восьми вершин смыкаются три квадратные грани. Есть еще более простой правильный многогранник, тетраэдр: это треугольная пирамида, образованная четырьмя одинаковыми равносторонними треугольниками, у него четыре вершины, в каждой их которых смыкаются три треугольные грани. (Мы рассматриваем только выпуклые многогранники, у которых каждая вершина направлена наружу – к ним относятся и куб, и тетраэдр.) Из текста «Тимея» понятно, что Платон откуда-то знал о том, что может быть лишь пять различных видов таких правильных многогранников, и он посчитал, что атомы различных форм материи имеют форму именно этих многогранников. Пять правильных многогранников включают тетраэдр, куб, октаэдр, додекаэдр и икосаэдр с 4, 6, 8, 12 и 20 гранями соответственно.

Сохранившееся со времен античности свидетельство о самой ранней попытке доказать, что существует лишь пять правильных многогранников, имеется в финальной, кульминационной части «Начал» Евклида. В предложениях 13–17 книги XIII Евклид описывает геометрическое строение тетраэдра, октаэдра, куба, икосаэдра и додекаэдра. Затем он пишет: «Вот я утверждаю, что, кроме упомянутых пяти тел, нельзя построить другого тела, заключенного между равносторонними и равноугольными равными друг другу <многоугольниками>»[27]. На самом деле после этого утверждения Евклид доказывает более узкую теорему о том, что в правильном многограннике существует только пять возможных комбинаций количества сторон


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Первые три минуты

В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
Научная журналистика как составная часть знаний и умений любого ученого. Учебник по научно-популярной журналистике

Эта книга адресована сразу трем аудиториям – будущим журналистам, решившим посвятить себя научной журналистике, широкой публике и тем людям, которые делают науку – ученым. По сути дела, это итог почти полувековой работы журналиста, пишущего о науке, и редактора научно-популярного и научно-художественного журнала. Название книги «Научная журналистика как составная часть знаний и умений любого ученого» возникло не случайно. Так назывался курс лекций, который автор книги читал в течение последних десяти лет в разных странах и на разных языках.


Фантастическая картотека

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


От Библии ни на шаг!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Электрошокеры - осторожно, злая собака!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Беседы о сельском хозяйстве

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Третья мировая война окончена

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.