Zn – 2ē → Zn2+ -E°Zn2+/Zn = +0,76 B
т.е, металлический цинк растворяется в растворах кислот с концентрацией ионов водорода 1 моль/л.
Девиз: “АКТИВНЫЙ – ОТДАЕТ”
ЛЕКЦИЯ 11
ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ МЕТАЛЛА.
ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ.
ЭЛЕКТРОЛИЗ. КОРРОЗИЯ
План:
Ряд стандартных электродных потенциалов.
Направление электродных процессов.
Уравнение Нернста.
Ряд стандартных электродных потенциалов
Если расположить стандартные электродные потенциалы металлов в порядке уменьшения их отрицательного значения и повышения положительного, т.е. в порядке возрастания электродных потенциалов, то получится ряд стандартных электро-дных потенциалов (ранее используемое название – ряд напряжений металлов).
Чем более отрицателен электродный потенциал, (металлы в ряду ДОН) тем выше способность металла посылать ионы в раствор и тем сильнее проявляет себя металл как восстановитель. Все металлы, расположенные левее водорода, т.е. имеющие отрицательное значение электродного потенциала, растворяются в кислотах с концентрацией (активностью) ионов водорода 1 моль/л.
Если электродный потенциал металла имеет положительный знак, то металл является окислителем по отношению к водоро
ду и не вытесняет его из растворов, содержащих по 1 моль/л ионов водорода и катионов металла, а, наоборот, водород вытесняет металл из раствора соли.
Рассмотрим гальваническую цепь из стандартных медного и цинкового электродов (концентрация ионов металлов в растворах по 1 моль/л). Эдс этого элемента составляет 1.10 В. Это значение – есть разность электродных потенциалов меди и цинка:
E° = E°Cu2+/Cu – E°Zn2+/Zn = 0.34 – (-0.760) = 1.10B
Цинк, электродный потенциал которого имеет отрицательное значение (-0,76 В), посылает в раствор большее число катионов чем медь, поэтому отрицательный заряд цинкового электрода будет выше и электроны с цинковой пластины переходят на медную, и, соединяясь с катионами меди из раствора вблизи медного электрода, приводят к осаждению металлической меди на элект-
роде. Таким образом, на цинковом электроде самопроизвольно проходит реакция окисления цинка, а на медном – восстанов
ление ионов Сu2+
Zn: Zn – 2ē → Zn2+
– Е° = +0.760
Cu: Cu2+ + 2ē → Cu
Е° = +0.34В
Суммарная реакция, протекающая в этом гальваническом элементе, записывается уравнением:
Cu2+ + Zn = Cu + Zn2+ Е° = +0.34 – (-0.76) = 1.10B
Направление электродных процессов
Для установления направления электродных процессов, расчета эдс и правильного написания уравнения самопроизвольно протекающей в гальваническом элементе реакции следует поступать следующим образом. Пользуясь таблицей стандартных электродных потенциалов, записывают уравнения реакций для каждого электрода с указанием значения электродного потенциала. Электродную реакцию с большим отрицательным или меньшим положительным значением потенциала переписывают в обратном направлении (при этом знак потенциала следует изменить на противоположный). Под этим уравнением записывают уравнение второй электродной реакции в том виде, в котором она дана в справочной таблице. Умножают коэффициенты при формулах веществ на такие числа, чтобы числа принятых и отданных электронов были равны (следует обратить внимание, что потенциалы на эти числа не умножаются!). Суммируют оба уравнения и их потенциалы. Таким путем получают оба уравнения, их потенциалы и уравнение самопроизвольно протекающей электродной реакции.
Ниже приведен пример использования данного способа для определения, будет ли олово растворяться в растворе кислоты с СH+ = 1 моль/л. Из табл. выписываем уравнения реакций и значения потенциалов для олова и водорода:
Sn2+ + 2ē → Sn
Е° = -0,14B
H+ + ē → 1/2 H2
Е° = 0
В прямом направлении самопроизвольно протекает реакция, характеризующаяся большим (алгебраическим) значением
потенциала. Так как Е°н+/н2 > Е°sn2+ /sn2; (0,00 > – 0.14), то такой реакцией является восстановление ионов водорода. Уравнение
другой реакции, как источника электронов, перепишем в об
ратном направлении
Sn = Sn2+ + 2ē Е° = + 0.14B
Общее уравнение реакции, проходящей в гальваническом элементе, получается суммированием обоих уравнений:
2H+ + Sn = Sn2+ + H2 Е° = 0.14 В
Таким образом, олово растворяется в растворе кислоты с СH+ = = 1 моль/л.
Определим, будет ли олово растворяться в воде. Из таблицы стандартных электродных потенциалов находим, что потенци
ал E°H+/H для воды (CH+ = 10-7 моль/л) не равен нулю, как это
имело место для растворов с CH+ = 1моль/л, а равен – 0,41 В, т.е.
H+ + ē → 1/2 H2 Е = – 0,41 В,
при CH+ = 10-7 моль/л
Для олова:
Sn2+ + 2ē → Sn
Е° = -0,14B
Так как |– 0,41| > |-0,14|, то в прямом направлении протекает реакция восстановления ионов олова (как она записана в табл.). Реакция, характеризующаяся меньшим потенциалом, будет протекать в обратном направлении, т.е.
H2 =2H+ + 2ē
Следовательно, реакция, протекающая самопроизвольно, выражается уравнением: Sn2+ + H2 = Sn + 2H+
Таким образом, в воде (точнее, в растворе соли с CSn2+ = 1 моль/ л) олово не растворяется, а если через раствор соли олова пропускать водород, то будет осаждаться металлическое олово.
Как известно, изменение изобарного потенциала в системе численно равно работе, совершаемой в результате химической реакции: