Об учёном незнании (De docta ignorantia) - [7]
Таковы математические предметы. Недаром именно в них мудрецы искусно находили примеры умопостигаемых вещей, и великие светочи древности приступали к трудным вещам только с помощью математических подобий. Боэций, ученейший из римлян, даже утверждал, что никому не постичь божественной науки, если он лишен навыка в математике[31]. Не Пифагор ли, первый философ и по имени и по делам, положил, что всякое исследование истины совершается через число? Пифагору следовали платоники и наши первые учители настолько, что Августин, а за ним Боэций утверждали, что первоначальным прообразом творимых вещей было в душе создателя несомненно число[32]. Разве Аристотель, который, опровергая предшественников, желал предстать единственным в своем роде, сумел показать нам в "Метафизике" различие сущностей каким-то другим образом, чем в сравнении с числами? Желая преподать свое учение о природных формах – о том, что одна пребывает в другой, – он тоже был вынужден прибегнуть к математическим фигурам и сказать: "Как треугольник в четырехугольнике, так низшее – в высшем"[33]. Молчу о бесчисленных сходных примерах. Платоник Августин Аврелий, исследуя количество души, ее бессмертие и другие высшие предметы, тоже пользовался помощью математики[34]. Наш Боэций счел этот путь самым уместным и постоянно утверждал, что и всякое учение об истине охватывается множеством и величиной. Если угодно, могу сказать короче: разве не с помощью математического доказательства пифагорейцам и перипатетикам только и удалось опровергнуть отрицающее Бога и противоречащее всей истине мнение эпикурейцев об атомах и пустоте, доказав, что невозможно прийти к неделимым и простым величинам, которые служили Эпикуру предпосылкой и основой всего его учения?[35]
Вступая на проложенный древними путь, скажем вместе с ними, что если приступить к божественному нам дано только через символы, то всего удобнее воспользоваться математическими знаками из-за их непреходящей достоверности.
Глава 12
КАК МЫ НАМЕРЕНЫ ПОЛЬЗОВАТЬСЯ МАТЕМАТИЧЕСКИМИ ЗНАКАМИ
Но поскольку, как ясно из предыдущего, простой максимум не может быть ничем из познаваемых или мыслимых вещей, то, намереваясь исследовать его через символы, мы должны вырваться за пределы простого уподобления. В математике все конечно, иначе там даже воображением представить было бы ничего нельзя. Если мы хотим воспользоваться конечным как примером для восхождения к максимуму просто, то надо, во-первых, рассмотреть конечные математические фигуры вместе с претерпеваемыми ими изменениями (passionibus) и их основаниями; потом перенести эти основания соответственно на такие же фигуры, доведенные до бесконечности; в-третьих, возвести эти основания бесконечных фигур еще выше, до простой бесконечности, абсолютно отрешенной уже от всякой фигуры. Только тогда наше незнание непостижимо осознает, как нам, блуждающим среди загадок, надлежит правильнее и истиннее думать о наивысшем.
Действуя так и приступая к делу под водительством максимальной истины, вспомним сначала разные высказывания святых мужей и высочайших умов, занимавшихся математическими фигурами. Благочестивый Ансельм сравнивал максимальную истину с бесконечной прямизной[36]; следуя ему, мы обращаемся к фигуре прямизны, которую я изображаю в виде прямой линии. Другие многоопытные мужи сравнивали преблагословенную Троицу с треугольником о трех равных прямых углах[37]; поскольку он, как будет показано, обязательно должен иметь бесконечные стороны, его можно назвать бесконечным треугольником. Мы следуем и за ними. Третьи, пытаясь представить в математической фигуре бесконечное единство, называли Бога бесконечным кругом. А созерцатели всецело актуального божественного бытия называли Бога как бы бесконечным шаром[38]. Опять-таки, мы покажем, что и они правильно понимали величайший максимум и что смысл у них всех один.
Глава 13
ОБ ИЗМЕНЕНИЯХ, ПРЕТЕРПЕВАЕМЫХ МАКСИМАЛЬНОЙ И БЕСКОНЕЧНОЙ ЛИНИЕЙ
Итак, я утверждаю, что если бы существовала бесконечная линия, она была бы прямой, она была бы треугольником, она была бы кругом, и она была бы шаром; равным образом, если бы существовал бесконечный шар, он был бы кругом, треугольником и линией; и то же самое надо говорить о бесконечном треугольнике и бесконечном круге.
Во-первых, что бесконечная линия будет прямой, очевидно: диаметр круга есть прямая линия, а окружность – кривая линия, большая диаметра; если эта кривая тем меньше в своей кривизне, чем большего круга окружностью она является, то окружность максимального круга, больше которого не может быть, минимально крива, а стало быть, максимально пряма. Минимум совпадает таким образом с максимумом. Даже и на глаз видно, что максимальная линия с необходимостью максимально пряма и минимально крива. Здесь не может оставаться ни тени сомнения, когда мы рассмотрим на фигуре сбоку, что дуга CD большего круга больше отступает от кривизны, чем дуга EF меньшего круга, а та больше отходит от кривизны, чем дуга GH еще меньшего круга, почему прямая линия AB будет дугой максимального круга, который уже не может увеличиться. Так мы видим, что максимальная и бесконечная линия по необходимости совершенно прямая и кривизна ей не противоположна; мало того, кривизна в этой максимальной линии ость прямизна. Это первое, что требовалось доказать.
В первый том Сочинений включены все главные произведения созданные в 1440–1450 годах. В них развертывается учение Николая о совпадении противоположностей в первоедином, о творческой роли человека во Вселенной, намечается новая, предкоперниканская космология.
Во второй том Сочинений вошли его главные произведения 1449—1464 гг. «Апология ученого незнания», «О видении бога», «Берилл», «О неином», «Игра в шар», «Охота за мудростью» и др. На почве античной и средневековой традиции здесь развертывается диалектика восхождения к первоначалу, учение о единстве мира, о человеке как микрокосме и о цели жизни.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Макс Нордау"Вырождение. Современные французы."Имя Макса Нордау (1849—1923) было популярно на Западе и в России в конце прошлого столетия. В главном своем сочинении «Вырождение» он, врач но образованию, ученик Ч. Ломброзо, предпринял оригинальную попытку интерпретации «заката Европы». Нордау возложил ответственность за эпоху декаданса на кумиров своего времени — Ф. Ницше, Л. Толстого, П. Верлена, О. Уайльда, прерафаэлитов и других, давая их творчеству парадоксальную характеристику. И, хотя его концепция подверглась жесткой критике, в каких-то моментах его видение цивилизации оказалось довольно точным.В книгу включены также очерки «Современные французы», где читатель познакомится с галереей литературных портретов, в частности Бальзака, Мишле, Мопассана и других писателей.Эти произведения издаются на русском языке впервые после почти столетнего перерыва.
В книге представлено исследование формирования идеи понятия у Гегеля, его способа мышления, а также идеи "несчастного сознания". Философия Гегеля не может быть сведена к нескольким логическим формулам. Или, скорее, эти формулы скрывают нечто такое, что с самого начала не является чисто логическим. Диалектика, прежде чем быть методом, представляет собой опыт, на основе которого Гегель переходит от одной идеи к другой. Негативность — это само движение разума, посредством которого он всегда выходит за пределы того, чем является.
В Тибетской книге мертвых описана типичная посмертная участь неподготовленного человека, каких среди нас – большинство. Ее цель – помочь нам, объяснить, каким именно образом наши поступки и психические состояния влияют на наше посмертье. Но ценность Тибетской книги мертвых заключается не только в подготовке к смерти. Нет никакой необходимости умирать, чтобы воспользоваться ее советами. Они настолько психологичны и применимы в нашей теперешней жизни, что ими можно и нужно руководствоваться прямо сейчас, не дожидаясь последнего часа.
На основе анализа уникальных средневековых источников известный российский востоковед Александр Игнатенко прослеживает влияние категории Зеркало на становление исламской спекулятивной мысли – философии, теологии, теоретического мистицизма, этики. Эта категория, начавшая формироваться в Коране и хадисах (исламском Предании) и находившаяся в постоянной динамике, стала системообразующей для ислама – определявшей не только то или иное решение конкретных философских и теологических проблем, но и общее направление и конечные результаты эволюции спекулятивной мысли в культуре, в которой действовало табу на изображение живых одухотворенных существ.
Книга посвящена жизни и творчеству М. В. Ломоносова (1711—1765), выдающегося русского ученого, естествоиспытателя, основоположника физической химии, философа, историка, поэта. Основное внимание автор уделяет философским взглядам ученого, его материалистической «корпускулярной философии».Для широкого круга читателей.
В монографии на материале оригинальных текстов исследуется онтологическая семантика поэтического слова французского поэта-символиста Артюра Рембо (1854–1891). Философский анализ произведений А. Рембо осуществляется на основе подстрочных переводов, фиксирующих лексико-грамматическое ядро оригинала.Работа представляет теоретический интерес для философов, филологов, искусствоведов. Может быть использована как материал спецкурса и спецпрактикума для студентов.