О неслышимых звуках - [6]

Шрифт
Интервал

Этим и объясняется неудача попыток применить слышимые звуки для обнаружения препятствий на пути корабля. От обычного источника звука эхо будет приходить не только от предметов, расположенных впереди корабля, но и от тех, которые находятся сбоку и даже позади.

При желании можно и звук сделать таким же направленным, как свет; для этого необходимо или увеличить размеры излучателя звука, или уменьшить длину звуковой волны, то есть увеличить ее частоту. Практически оказывается, что для получения сравнительно мало расходящегося звукового луча надо пользоваться ультразвуковыми волнами.

Уже в первых опытах с ультразвуком было замечено, что он действительно распространяется узким пучком. Причина этого для нас сейчас ясна. В самом деле, в воде ультразвук частотою 20 тысяч колебаний в секунду имеет длину волны всего 7,5 сантиметра; таким образом, вибратор диаметром 50 сантиметров будет превышать длину волны в 6,6 раза.

Излучение такого вибратора будет направленным, подобно световому лучу.

Для того чтобы сделать столь же направленными обычные слышимые звуки, потребовалось бы сконструировать источник звука размером около 10 метров! Использовать такой прибор практически невозможно. Теперь нам ясно, почему Ланжевен для обнаружения подводных лодок воспользовался именно ультразвуком, который легко направить в виде узкого лучика в выбранном направлении.

Казалось бы, задача борьбы с подводными пиратами была решена. Но это впечатление было обманчивым. На пути к осуществлению простой идеи Ланжевена и Шиловского стояло еще много трудностей. И камертоны и свистки Гальтона давали очень слабые ультразвуки, и с их помощью нельзя было обнаружить подводные лодки. Отсутствие соответствующих источников ультразвука не позволило применить его и для обнаружения айсбергов, хотя после гибели «Титаника» такие предложения высказывались.

Практика поставила перед наукой новую задачу: необходимо было создать мощный источник ультразвука.


Чудесные кристаллы

Многие из читателей видели красивые кристаллы горного хрусталя, или, как его называют в химии, кварца (рис. 6).


>Рис. 6. Кварц и пьезопластинка

Пластинка, вырезанная из кристалла кварца, обладает замечательными свойствами: при сжатии на противоположных гранях пластинки возникают разноименные электрические заряды. Такое возникновение электричества под действием давления называют пьезоэлектрическим эффектом.

Если такую пластинку растянуть, то на ее гранях также появятся электрические заряды, но знаки их будут обратны тем, которые были при сжатии.

Попеременно сжимая и растягивая пластинку, мы вызовем появление на ее противоположных гранях разноименных зарядов, знаки которых будут меняться соответственно с изменениями формы пластинки.

Этим не ограничиваются замечательные свойства кварцевой пластинки. Оказывается, что если ее противоположные грани заряжать разноименным электричеством, то в такт изменениям знаков зарядов меняется и форма пластинки: пластинка делается то толще, то тоньше.

Поместим пластинку в газ или жидкость. При утолщении пластинки грани ее, двигаясь наподобие поршня в цилиндре паровой машины, подожмут вещество, в которое она погружена. При сжатии же пластинки, наоборот, вблизи ее поверхности образуется разрежение. Повторяющиеся изменения формы пластинки вызовут в окружающем ее веществе возникновение чередующихся сжатий и разрежений. Сжатия и разрежения, распространяясь в пространстве, и создадут волну. Пластинка явится источником волн — излучателем (рис. 7).


>Рис. 7. Пьезоэлектрический излучатель

Изменения формы пластинки можно производить с любой частотой, для этого достаточно с соответствующей скоростью изменять знаки электрических зарядов на ее гранях.

Известный советский физик Сергей Яковлевич Соколов заставил кварцевую пластинку совершать миллиарды колебаний в секунду, однако и это не является пределом.

Надо помнить, что изменение размеров кварцевой пластинки очень невелико. Если к кварцевой пластинке, подвести электрическое напряжение, скажем, в 1000 вольт, то толщина пластинки увеличится или уменьшится лишь на 2 десятимиллионные части сантиметра; это расстояние ничтожно мало, на нем могло бы уложиться всего 10–15 атомов.

Но можно увеличить размах колебаний пластинки.

Проделаем такой опыт: привязав к нитке небольшую гирьку, заставим ее совершать колебания. По секундной стрелке часов заметим тот момент, когда гиря пройдет через положение равновесия, и, отсчитав 20 качаний, узнаем, сколько для этого требуется времени. Затем, толкнув гирю посильнее, увеличим размах ее колебаний. Окажется, что и при большем размахе для 20 колебаний потребуется ровно столько же времени. В нашем опыте гирька совершала свободные колебания, и мы убедились, что частота свободных, или, как говорят, собственных, колебаний тела не зависит от размаха, или, что то же, от амплитуды колебаний.

Но от чего же зависит частота собственных колебаний?

Достаточно укоротить или удлинить нить, на которой висит гиря, как частота собственных колебаний гирьки изменится. Чем короче подвес, тем больше будет частота колебаний.

Каждое колеблющееся тело обладает характерной для него частотой собственных колебаний. Так, например, если толкнуть качели, они начнут раскачиваться с совершенно определенной частотой. Подталкивая их, можно увеличить размах качаний. Чтобы сделать размах качаний особенно большим, надо, как вы знаете, подталкивать качели «в такт» их колебаниям, то есть с той частотой, с которой они совершают колебания, будучи предоставлены самим себе. Эту частоту называют резонансной частотой. Всякое колеблющееся тело имеет свою собственную резонансную частоту. В тех случаях, когда вызывающая колебания сила изменяется с резонансной частотой, размах совершаемых телом колебаний делается особенно большим. История знает случай, когда небольшой отряд солдат, проходя по мосту и четко отбивая шаг, случайно попал в резонанс с колебаниями моста, В результате резонанса колебания моста настолько возросли, что мост разрушился.


Еще от автора Борис Борисович Кудрявцев
Биография великана

Разве не великан человеческая мысль, создавшая науку, могущество которой безгранично? Да, великан. И из биографии его мы узнаем, что зародился он в дремучем мозгу нашего обезьяноподобного пращура, с рычанием отбивавшегося от хищного мира животных. Шли века… Великан гигантски вырос и поднял человека в космос, к планетам, к звездам! О развитии, победах и поражениях человеческого знания, боровшегося с силами природы, с темными силами мракобесия, и рассказывается в этой книге.


Движение молекул

В этой книжке рассказывается о главном, неотъемлемом свойстве невидимых частиц вещества — об их движении и о связанных с этим свойствах тел.


Первоначала вещей

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Великая разруха Московского государства, 1598–1612 гг.

В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.


Знание-сила, 1997 № 04 (838)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1997 № 02 (836)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2008 № 10 (976)

Ежемесячный научно-популярный и научно-художественный журнал.


Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 01 (967)

Ежемесячный научно-популярный и научно-художественный журнал.


Оружие авиации

В книге кратко излагаются вопросы возникновения авиационного вооружения, рассматриваются основы теории воздушной стрельбы и бомбометания, дается характеристика авиационных боеприпасов и различных прицельных устройств, применяемых на современных боевых самолетах. В книге также отводится место вопросам применения авиацией ракетного оружия. Современное состояние авиационного вооружения и тенденции его развития освещаются по зарубежным материалам, опубликованным в последние годы в журналах «Авиэйшн уик», «Флайт», «Орднанс» и др. Книга предназначается для солдат, матросов, сержантов, старшин, курсантов военных училищ и школ всех родов войск и видов вооруженных сил, членов ДОСААФ и для широкого круга молодежи, интересующейся авиацией. Книга может быть также полезной и для офицеров Советской Армии и Военно-Морского Флота.


Дарвинизм и религия

В книге проф. Г. В. Платонова «Дарвинизм и религия» говорится, что на протяжении многих столетий загадка появления на Земле разнообразных видов животных и растений, их изумительной приспособленности к среде умело использовалась церковью и ее прислужниками для «доказательства» существования бога. Дать ей вполне научное, опирающееся на многочисленные факты, решение удалось только великому английскому естествоиспытателю Чарлзу Дарвину (1809–1882). Своей теорией Дарвин нанес удар огромной силы по религии.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.