О неслышимых звуках - [4]

Шрифт
Интервал

Как показывает опыт, сила, при которой звуки разной частоты вызывают появление болевого ощущения, различна; поэтому мы можем заключить, что порог болевого ощущения изменяется при изменении частоты звука. В области частот, соответствующей максимальной чувствительности человеческого уха, то есть там, где мы различаем самые слабые звуки, наше ухо может воспринимать без ощущения боли и очень мощные звуки.

Если силу наиболее слабого из воспринимаемых ухом звуков условно принять за единицу, то сила наиболее мощного звука той же частоты, который еще не будет вызывать ощущения боли, выразится числом, состоящим из единицы и 12 нулей!

Сказанное наглядно поясняет рис. 4. Вдоль горизонтальной оси отложена частота звука, вдоль вертикальной — сила звука.


>Рис. 4. Область слышимых звуков

Сплошная кривая соответствует порогу слышимости, а пунктирная кривая — порогу болевого ощущения.

Как можно убедиться, взглянув на рисунок, верхняя и нижняя кривые сближаются как при значительном увеличении частоты, так и при ее уменьшении. На рисунке при этом выделяется определенная область частот, которые соответствуют волнам, воспринимаемым человеческим ухом как звук. В заштрихованной части этой области находятся волны, используемые нами при разговоре и в музыке. Как мы видим, это только очень небольшая часть тех волн, которые воспринимает человеческое ухо.

Многие читатели, несомненно, задумаются над тем, имеется ли предел увеличению частоты звуковых колебаний.

Замечательный русский физик Петр Николаевич Лебедев, впервые применивший в исследовательской работе ультразвук, обратил внимание на то, что затухание высокочастотных звуков ставит предел распространению их в воздухе. П. Н. Лебедев подсчитал, что звуки с частотой около 5 миллионов колебаний в секунду практически не будут распространяться в воздухе, они будут затухать непосредственно у источника колебаний.


>Петр Николаевич Лебедев (родился в 1866 г., умер в 1912 г.)

Хотя в жидких и твердых телах звук затухает несравненно медленнее, все же и в них нельзя беспредельно увеличивать его частоту. Рано или поздно мы, наконец, достигнем частот, соответствующих тепловым колебаниям молекул. Такие частоты будут верхней границей области ультразвуковых колебаний. Но чтобы достичь верхней границы ультразвуковых колебаний, надо увеличить частоту колебаний ультразвука еще в несколько тысяч раз по сравнению с той, которой удалось достичь сейчас.

Некоторые из замечательных свойств ультразвука, такие, например, как ускорение им химических превращений или способность дробить вещество, объясняются в большей степени его мощностью, нежели высокой частотой колебаний. Когда удалось получить достаточно мощные слышимые звуки, обнаружилось, что и они вызывают сходные действия. Поэтому когда в наше время говорят о практическом использовании ультразвуков, то часто обсуждают и возможные применения мощных слышимых звуков.

Глава 2.

ПЕРВЫЕ ПРИМЕНЕНИЯ УЛЬТРАЗВУКА


Много лет назад

Первое практическое применение ультразвука относится к тем временам, когда наши знания вообще о звуках были очень скудными. Даже природа звука не была еще хорошо известна человеку, а об ультразвуке не имели и понятия.

Наблюдая окружающую жизнь, человек заметил, что собаки реагируют на какие-то звуки, которых он сам не слышит. С этим наблюдением и было связано первое применение ультразвуков.

С давних пор браконьеры — люди, занимающиеся недозволенной охотой, — жестоко преследовались законом. Они обычно пользовались особым коротким свистком, который так и назывался «свистком браконьера». Свисток издавал звук столь большой частоты, что человек его не слышал, но слышала собака.

Спрятавшись в кустах, браконьер мог спокойно подозвать к себе собаку, не опасаясь стоящего поблизости сторожа. Это объясняется тем, что область слышимых звуков для собак иная, чем для человека.

Впрочем, браконьеры так же мало задумывались над природой ультразвука, как не задумывался над превращением энергии первобытный человек, добывавший огонь ударом камня о камень.

Изучать же ультразвук стали сравнительно недавно.

В конце прошлого и начале нашего века в развитии науки произошел гигантский скачок. В эти годы была установлена сложность строения атома, обнаружена способность некоторых элементов самопроизвольно превращаться в другие, открыты различные «невидимые» лучи, замечательный русский ученый А. С. Попов подарил миру величайшее изобретение — радио. Все эти достижения подготовили почву для проникновения еще в одну, до того неведомую область природы — в мир ультразвуков.

Ультразвуковые волны были получены в физических лабораториях в самом конце прошлого века с помощью очень маленьких камертонов, имевших в длину всего несколько миллиметров. Частота ультразвука доходила до 90 тысяч колебаний в секунду. Использовали для получения ультразвука также и особые свистки, названные по имени изобретателя «свистками Гальтона» (рис. 5). Но практического применения неслышимые звуки не находили. Именно это обстоятельство и было одной из причин медленного вначале развития новой области знания.


>Рис. 5. Современный свисток для получения ультразвука

Еще от автора Борис Борисович Кудрявцев
Биография великана

Разве не великан человеческая мысль, создавшая науку, могущество которой безгранично? Да, великан. И из биографии его мы узнаем, что зародился он в дремучем мозгу нашего обезьяноподобного пращура, с рычанием отбивавшегося от хищного мира животных. Шли века… Великан гигантски вырос и поднял человека в космос, к планетам, к звездам! О развитии, победах и поражениях человеческого знания, боровшегося с силами природы, с темными силами мракобесия, и рассказывается в этой книге.


Движение молекул

В этой книжке рассказывается о главном, неотъемлемом свойстве невидимых частиц вещества — об их движении и о связанных с этим свойствах тел.


Первоначала вещей

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Золотая Орда. Монголы на Руси. 1223–1502

Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.


Великая разруха Московского государства, 1598–1612 гг.

В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.


Камень, ножницы, теорема. Фон Нейман. Теория игр.

Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Получение энергии. Лиза Мейтнер. Расщепление ядра

Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль.


Ядерные реакторы

В предлагаемой книге доктор физико-математических наук Балабанов Е. М. в популярной форме рассказывает о достижениях и сложнейших проблемах атомной энергетики. Читатель узнает об истории, современном этапе и перспективах современнейшей отрасли науки и техники. Книга рассчитана на самые широкие круги читателей.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.