О движении - [59]
Однако до Остроградского начало возможных перемещений выражалось в такой форме, что могло применяться к расчету только системы тел с удерживающими или двусторонними связями.
Такие связи, допуская движение части механизма в одну сторону, позволяют ему двигаться и в противоположную и, наоборот, не допуская движения в одну сторону, не допускают его и в другую.
Обыкновенный подшипник представляет собой пример двусторонней, или удерживающей, связи: он не «дозволяет» (как писали в курсах механики) ни опускания, ни поднятия вращающейся в нем шейки вала.
Но если снять крышку подшипника, то связь становится односторонней, или неудерживающей. Такие подшипники применяются для тяжелых водяных колес и ветряков. Подшипник без крышки не препятствует поднятию вала, удерживаемого на месте только тяжестью колеса.
Лагранж и все механики XVIII века считали, что начало возможных перемещений приложимо только к двусторонним связям. Они не применили бы это условие равновесия к водяному колесу с подшипниками без крышек.
М. В. Остроградский распространил начало возможных перемещений и на односторонние связи. Он доказал, что в этом случае для равновесия необходимо, чтобы возможная работа всех приложенных к телу сил была меньше или равна нулю (возможность отрицательной работы объясняется, конечно, тем, что движению приписывается знак в зависимости от направления).
Независимо от своего современника — английского физика Вильяма Гамильтона (1805–1865), М. В. Остроградский ввел в механику так называемый принцип наименьшего действия. Это один из важнейших законов механики. Он гласит, что при свободном перемещении тел из одного положения в другое движение происходит так, что работа сил имеет наименьшую величину.
Зарождение этого принципа в виде философской мысли, будто природа «стремится» к тому, чтобы все действия совершались с наименьшей затратой энергии (или, как говорили тогда, силы), относится к давним временам. В XVII веке такая идея была высказана французским математиком Пьером Ферма (1601–1665), сумевшим применить ее к выводу закона преломления света.
Ферма предположил, что распространение света в воде и стекле встречает большее сопротивление, чем в воздухе. Он стал искать, по какому пути должен идти луч света, чтобы общее сопротивление в обеих средах (воздух — стекло) вместе было наименьшим. Понятно, Что такой путь луч пройдет и в наикратчайшее время.
Оказалось, что для этого при переходе в более плотную среду луч должен преломиться, приблизившись к перпендикуляру, восстановленному в точке его падения к поверхности раздела. Отклонение должно быть таким, чтобы отношение синусов угла падения и преломления было равно отношению скоростей в двух средах.
Однако принцип наименьшего действия оставался отвлеченным и не мог быть признан физическим законом.
Впоследствии начало наименьшего действия получило обоснование и развитие в работах Эйлера, который показал, что этот принцип соблюдается и в движении тел под действием центральных сил, например планет.
Наконец Остроградский и Гамильтон, независимо друг от друга, придали этому принципу окончательную форму закона механики.
В тесной связи с исследованиями в механике стояли и математические работы М. В. Остроградского.
Этот замечательный русский математик развил так называемое вариационное исчисление, главнейшая задача которого — отыскание наибольшего и наименьшего значения различных величин. Примером вопросов, решаемых с помощью этого исчисления, может служить следующий: найти кривую, двигаясь по которой под действием тяжести тело пришло бы в кратчайшее время из одной точки над земной поверхностью в другую.
М. В. Остроградский исследовал и проблемы баллистики — науки о движении снаряда. Он работал и в области небесной механики, дав новые доказательства некоторым из ее теорем.
Работы М. В. Остроградского были большим шагом вперед в аналитической механике и математике. Они прославили имя этого замечательного русского ученого, и Парижская Академия наук избрала его своим членом-корреспондентом.
Значительные успехи в динамике вращающегося тела были достигнуты благодаря работам русского математика С. В. Ковалевской (1850–1891).
Дочь генерала-артиллериста, С. В. Ковалевская получила хорошее образование. Еще в раннем возрасте она проявила замечательные математические способности. Пятнадцати лет С. В. Ковалевская уже брала уроки высшей математики в Москве. Через несколько лет она училась у одного из известнейших математиков Германии, Вейерштрасса, и слушала лекции знаменитого физика Гельмгольца.
По представлению Вейерштрасса, Геттингенский университет присудил С. В. Ковалевской за три математические работы ученую степень доктора без установленных для этого экзаменов.
В одной из этих работ С. В. Ковалевская исследовала вопрос о кольце Сатурна, развивая идеи знаменитого французского математика Пьера Лапласа (1749–1827), изложенные им в труде «Небесная механика».
По возвращении в Россию С. В. Ковалевская не могла бы в те времена найти большего приложения своих математических познаний, чем преподавание арифметики в младших классах гимназии.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Третья книга трилогии «Тарантул».Осенью 1943 года началось общее наступление Красной Армии на всем протяжении советско-германского фронта. Фашисты терпели поражение за поражением и чувствовали, что Ленинград окреп и готовится к решающему сражению. Информация о скором приезде в осажденный город опасного шпиона Тарантула потребовала от советской контрразведки разработки серьезной и рискованной операции, участниками которой стали ребята, знакомые читателям по первым двум повестям трилогии – «Зеленые цепочки» и «Тайная схватка».Для среднего школьного возраста.
Книгу составили известные исторические повести о преобразовательной деятельности царя Петра Первого и о жизни великого русского полководца А. В. Суворова.
Молодая сельская учительница Анна Васильевна, возмущенная постоянными опозданиями ученика, решила поговорить с его родителями. Вместе с мальчиком она пошла самой короткой дорогой, через лес, да задержалась около зимнего дуба…Для среднего школьного возраста.
Лирическая повесть о героизме советских девушек на фронте время Великой Отечественной воины. Художник Пинкисевич Петр Наумович.