О чем рассказывает свет - [6]
Рис. 12. Определение разности хода волн двух параллельных лучей
Ясно, что до взаимной встречи луч 1 должен будет пройти путь больший, чем луч 2, а именно на величину, которая на рисунке обозначена буквами А>1Б>1. Пусть у этих лучей разность хода волн в точках А>1и А>2равна нулю. Когда волны света, идущие вдоль луча 1, достигнут точки Б>1образуется разность хода волн (по отношению к волнам, идущим вдоль луча 2). Она будет равна отрезку А>1Б>1.
Что будет на экране в результате взаимодействия лучей, идущих в указанном направлении под углом φ>1— усилится яркость света или, напротив, он погаснет?
Это зависит от величины разности хода волн, выражаемой отрезком А>1Б>1. Если отрезок А>1Б>1равен целому числу волн (0, λ, 2λ, Зλ, 4λ и т. д.), то в направлении под углом φ>1 будет усиление света. Если же отрезок А>1Б>1равен целому числу волн с половиной (λ/2, 1 1/2λ, 2 1/2λ и т. д.), то в направлении φ>1 лучи погасят друг друга.
Рис. 13. Зависимость разности хода волн от угла отклонения лучей
Если мы будем рассматривать другую пару интерферирующих лучей, идущих под углом φ>2, то длина отрезка А>1Б>1т. е. разность хода волн, будет уже другой; это ясно видно на рис. 13 : А>1Б>1 не равно А>1Б>2.
Будем последовательно рассматривать пары интерферирующих лучей, начиная с тех, которые идут под углом, равным нулю.
Ясно, что разность хода волн у этой первой пары лучей равна нулю; они усилят друг друга, на экране появится цветная яркая полоса. По мере увеличения угла отклонения лучей разность хода волн будет возрастать и приближаться к λ/2, яркость света в этих направлениях будет постепенно ослабляться. Когда при некотором угле разность хода волн достигнет λ/2, лучи в этом направлении погасят друг друга, на экране будет темная полоса.
При дальнейшем увеличении угла разность хода волн будет возрастать от λ/2 и выше. Яркость освещения в соответствующих местах экрана будет постепенно увеличиваться. Она будет наибольшей, когда разность хода волн достигнет λ. Далее при возрастании угла разность хода волн будет возрастать от λ и выше; когда она достигнет 1 1/2λ на экране снова появится темная полоса.
Так, при возрастании наклона лучей разность хода волн у пары соседних лучей будет поочередно равна 0, λ/2, 1λ, 1 1/2λ, 2λ, 2 1/2λ и т. д., а на экране в соответствующих направлениях будут перемежаться цветные и темные полосы.
Если мы будем освещать щели другими одноцветными лучами, то у них наклон лучей, дающих первую темную полосу, будет уже не тот, что у лучей первого цвета. Это происходит потому, что у них другая длина волны; поэтому отрезок, равный разности хода в полуволну, будет уже не А>1Б>1, а какой-то другой.
Так представляют себе физики механизм появления световой интерференции.
Как можно измерить длину световой волны
Опыт с интерференцией света замечателен не только тем, что он свидетельствует о наличии у света волновых свойств, он дает возможность измерить и длину волны интерферирующего света.
Рассмотрим на экране (рис. 14) те цветные полосы, в которых лучи света усиливают друг друга, т. е. где образуются «максимумы света». Одна из цветных полос по перпендикуляру от щели будет наиболее яркой; она образуется от лучей, которые идут после прохождения щелей под углом φ>1 равным нулю. Физики назвали эту яркую цветную полосу «максимумом нулевого порядка». По обе стороны от нее будут цветные полосы одинаковой яркости, но послабее, чем максимум нулевого порядка. Это — максимумы первого порядка.
Рис. 14. Схема образования в дифракционной решетке светового максимума первого порядка, из рассмотрения которого измеряется длина волны света
За ними последуют максимумы следующих порядков. Разность хода волн у лучей, образующих максимумы первого порядка, равна А>1Б>1 = λ, т. е. одной длине волны. А под каким углом φ>1идут лучи, образующие этот максимум? Этот угол можно измерить из установки. Для этого нужно измерить на экране расстояние между максимумами нулевого и первого порядков М>0М>1, а также расстояние от пластинки со щелями до экрана A>1M>0. И то и другое сделать нетрудно. А измерив эти расстояния, можно или построить или, еще лучше, рассчитать интересующий нас угол φ>1 согласно правилам тригонометрии.
А когда мы будем знать величину угла φ>1, тригонометрия нам поможет найти связь между тремя величинами: длиной волны λ, расстоянием между центрами двух щелей A>1A>2 = d и углом φ>1под которым образуется максимум первого порядка. На рисунке 14 длина волны λ представлена отрезком («разностью хода») А>1Б>1 расстояние между центрами щелей — отрезком А>1А>2, угол φ>1 образуется перпендикуляром А>1М>0и лучом A>1M>1; но угол, образуемый отрезками А>2А>1и А>2Б>1также равен углу φ>1, так как эти отрезки перпендикулярны отрезкам А>1М>0и А>1М>1. Из рисунка видно, что согласно правилам тригонометрии А>1Б>1 / А>1А>2 = sin φ>1. Если мы заменим отрезки их физическими значениями, то получим после умножения обеих частей равенства на d:
λ = d sin φ>1
Итак, мы получили длину волны интерферирующего света и можем подвести итог: чтобы измерить длину волны света, надо в опыте с интерференцией измерить три величины: 1) расстояние между максимумами нулевого и первого порядка, 2) расстояние от пластинки со щелями до экрана (из этих двух измерений мы находим угол
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Роль взрывчатых веществ в горном деле и других отраслях промышленности и народного хозяйства в целом так велика, что трудно представить себе, как без них был бы достигнут современный уровень материальной культуры. Что же такое взрывчатые вещества, на чём основано их действие при взрыве, из чего они изготовляются и как применяются — об этом и рассказывается в книге Константина Константиновича Андреева (1905–1964).
Знаменитый писатель-фантаст, ученый с мировым именем, великий популяризатор науки, автор около 500 научно-популярных, фантастических, детективных, исторических и юмористических изданий приглашает вас в мир творчества великого английского драматурга. Эта книга входит в серию популярных азимовских «путеводителей». Автор систематизирует драматургические произведения Шекспира, анализируя их содержание, скрупулезно разбирает каждую цитату, каждый отрывок, имеющий привязку к реальным историческим событиям, фольклорную или мифологическую основу.
В книге А. Азимова собраны ценнейшие научные данные из истории Англии. Повествование охватывает исторические события, начиная с ледникового периода и заканчивая временами Великой хартии вольностей. Автор исследует влияние других цивилизаций — римлян, викингов — на развитие политики, науки, религии и культуры этого государства.