Новый ум короля: О компьютерах, мышлении и законах физики - [57]
Процедура, которая напрашивается сама собой, заключается в следующем. Давайте положим, что P>k(k) — совершенно верное утверждение (переобозначим его здесь как G>0). Тогда мы можем присоединить его к нашей системе в качестве дополнительной аксиомы. Естественно, что наша новая система будет, в свою очередь, содержать новое утверждение Геделя, скажем, G>1, которое также будет истинным числовым выражением. Соответственно, мы можем и G>1 добавить в нашу систему. Это даст нам новую улучшенную систему, которая также содержит новое утверждение Геделя G>2 (опять же совершенно справедливое); и мы сможем снова добавить его к системе, получая следующее утверждение Геделя G>3 , которое мы тоже присоединяем — и так далее, повторяя этот процесс неограниченно. Что мы можем сказать о получившейся в результате системе, где мы используем весь набор G>0, G>1, G>2, G>3…. как дополнительные аксиомы? Может ли эта система быть полной? Поскольку мы теперь имеем неограниченную (бесконечную) систему аксиом, то возможность применения процедуры Геделя совсем не очевидна. Однако, это последовательное включение утверждений Геделя является в высшей степени систематичной схемой, результат применения которой может быть истолкован как обычная конечная система аксиом и правил вывода. Эта система будет иметь свое собственное утверждение Геделя G>ω которое мы также сможем к ней присоединить, получая новую систему и с ней — еще одно утверждение Геделя G>ω+1. Продолжая, как и ранее, мы получаем набор утверждений G>ω , G>ω+1 ,G>ω+2 , G>ω+3, каждое из которых истинно и может быть включено в нашу формальную систему. Сохраняя свойство строгой систематичности, этот процесс вновь приводит нас к созданию новой системы, которая охватывает все созданные к этому моменту аксиомы. Но и эта система, в свою очередь, имеет свое собственное утверждение Геделя, скажем, G>ω+ω— которое можно переписать как G>ω2, и мы можем начать всю процедуру заново. В результате этого мы получим новый бесконечный, но систематический, набор аксиом G>ω2 , G>ω2+1, G>ω2+2, и т. д., приводящий к еще одной новой системе — и новому утверждению Геделя G>ω3. Воспроизводя весь процесс, мы получаем G>ω4, потом — G>ω5 и так далее. И эта схема также будет полностью систематичной и даст свое собственное утверждение Геделя G>ω>2.
Есть ли логическое завершение у этого процесса? В определенном смысле — нет; но это приводит нас к ряду трудных математических рассуждений, которые здесь не могут быть нами рассмотрены во всех деталях. Вышеуказанная процедура обсуждалась Аланом Тьюрингом в статье[75], опубликованной в 1939 году. Примечательно, что на самом деле любое истинное (в общепринятом смысле) утверждение в арифметике может быть получено путем повторения процедуры «геделизации» такого рода (см. Феферман [1988]). Однако это может вызвать вопрос о том, как мы в действительности решаем, является ли утверждение истинным или ложным. Исключительно важным будет также понять, как на каждом этапе нужно выполнять присоединение бесконечного семейства утверждений Геделя, чтобы они порождали единственную дополнительную аксиому (или конечное число аксиом). Для выполнения такого присоединения требуется определенная алгоритмическая систематизация нашего бесконечного семейства. Чтобы быть уверенным в том, что подобная систематизация корректна и приводит к желаемому результату, нам придется опереться на интуитивные представления, выходящие за рамки системы — точь-в-точь, как мы это сделали для установления истинности P>k(k). Именно эти «прозрения» и не могут быть систематизированы, не говоря о том, что они должны лежать вне сферы действия любой алгоритмической процедуры!
Интуитивная догадка, которая позволила нам установить, что утверждение Геделя P>k(k) является на самом деле истинным, представляет собой разновидность общей процедуры, известной логикам как принцип рефлексии: посредством нее, размышляя над смыслом системы аксиом и правил вывода и убеждаясь в их способности приводить к математическим истинам, можно преобразовывать интуитивные представления в новые математические выражения, невыводимые из тех самых аксиом и правил вывода. То, как нами была выше установлена истинность P>k(k), как раз базировалось на применении этого принципа. Другой принцип рефлексии, имеющий отношение к доказательству Геделя (хотя и не упомянутый выше), опирается на вывод новых математических истин исходя из представления о том, что система аксиом, которую мы полагаем априори адекватной для получения математических истин, является непротиворечивой. Применение принципов рефлексии часто подразумевает размышления о бесконечных множествах, и при этом нужно быть всегда внимательным и остерегаться рассуждений, которые могут привести к парадоксам наподобие расселовского. Принципы рефлексии полностью противопоставляются рассуждениям формалистов. Если использовать их аккуратно, то они позволяют вырваться за жесткие рамки любой формальной системы и получить новые, основанные на интуитивных догадках, представления, которые ранее казались недостижимыми. В математической литературе могло бы быть множество приемлемых результатов, чье доказательство требует «прозрений», далеко выходящих за рамки исходных правил и аксиом стандартной формальной системы арифметики. Все это свидетельствует о том, что деятельность ума, приводящая математиков к суждениям об истине, не опирается непосредственно на некоторую определенную формальную систему. Мы убедились в истинности утверждения Геделя
Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.
Книга содержит три тома: «I — Материализм и диалектический метод», «II — Исторический материализм» и «III — Теория познания».Даёт неплохой базовый курс марксистской философии. Особенно интересена тем, что написана для иностранного, т. е. живущего в капиталистическом обществе читателя — тем самым является незаменимым на сегодняшний день пособием и для российского читателя.Источник книги находится по адресу https://priboy.online/dists/58b3315d4df2bf2eab5030f3Книга ёфицирована. О найденных ошибках, опечатках и прочие замечания сообщайте на [email protected].
Эстетика в кризисе. И потому особо нуждается в самопознании. В чем специфика эстетики как науки? В чем причина ее современного кризиса? Какова его предыстория? И какой возможен выход из него? На эти вопросы и пытается ответить данная работа доктора философских наук, профессора И.В.Малышева, ориентированная на специалистов: эстетиков, философов, культурологов.
«Священное ремесло» – книга, составленная из текстов, написанных на протяжении 45 лет. Они посвящены великим мыслителям и поэтам XX столетия, таким как Вячеслав Иванов, Михаил Гершензон, Александр Блок, Семен Франк, Николай Бердяев, Яков Голосовкер, Мартин Хайдеггер и др. Они были отмечены разными призваниями и дарами, но встретившись в пространстве книги, они по воле автора сроднились между собой. Их родство – в секрете дарения себя в мысли, явно или неявно живущей в притяжении Бога. Философские портреты – не сумма литературоведческих экскурсов, но поиск богословия культуры в лицах.
Данное издание стало результатом применения новейшей методологии, разработанной представителями санкт-петербургской школы философии культуры. В монографии анализируются наиболее существенные последствия эпохи Просвещения. Авторы раскрывают механизмы включения в код глобализации прагматических установок, губительных для развития культуры. Отдельное внимание уделяется роли США и Запада в целом в процессах модернизации. Критический взгляд на нынешнее состояние основных социальных институтов современного мира указывает на неизбежность кардинальных трансформаций неустойчивого миропорядка.
Монография посвящена исследованию становления онтологической парадигмы трансгрессии в истории европейской и русской философии. Основное внимание в книге сосредоточено на учениях Г. В. Ф. Гегеля и Ф. Ницше как на основных источниках формирования нового типа философского мышления.Монография адресована философам, аспирантам, студентам и всем интересующимся проблемами современной онтологии.
Книга содержит собрание устных наставлений Раманы Махарши (1879–1950) – наиболее почитаемого просветленного Учителя адвайты XX века, – а также поясняющие материалы, взятые из разных источников. Наряду с «Гуру вачака коваи» это собрание устных наставлений – наиболее глубокое и широкое изложение учения Раманы Махарши, записанное его учеником Муруганаром.Сам Муруганар публично признан Раманой Махарши как «упрочившийся в состоянии внутреннего Блаженства», поэтому его изложение без искажений передает суть и все тонкости наставлений великого Учителя.