Нейтрино - призрачная частица атома - [5]
Важно понять, что закон сохранения импульса (подобно всем другим законам сохранения, которые я буду упоминать в книге), является результатом экспериментальных наблюдений, а не логических выводов. Точнее говоря, нельзя утверждать, что импульс должен сохраняться при всех условиях. Импульс сохраняется при всех условиях, которые когда-либо наблюдались, и с той степенью точности, с которой его измеряли.
В таком случае, имеем ли мы право утверждать, что закон никогда не нарушается? Все, чем мы располагаем, — это наш опыт, а он может быть недостаточным В начале главы казалось, что существует закон сохранения скорости, но когда опыт расширился, он сам собой отпал. Случится ли что-либо подобное с законом сохранения импульса? Если не сейчас, то когда-нибудь? Да, конечно, может случиться. В последние годы некоторые важные законы сохранения неожиданно перестали существовать. (Позднее я опишу один такой случай.)
Тем не менее, когда наблюдается явление, которое как кажется на первый взгляд, доказывает несостоятельность важного обобщения, ученым следует тщательно изучить это явление. Нельзя ли его интерпретировать так, чтобы оно не противоречило закону? Если это можно сделать, тем лучше.
Но в случае закона сохранения импульса с ним согласуется множество наблюдений, начиная с космических звездных систем и кончая микросистемами субатомных частиц, и ученым в самом деле трудно согласиться с каким-либо его нарушением. Они готовы принять почти любое объяснение нарушения закона, лишь бы спасти обобщение. Закон сохранения импульса оказался так не-обыкновенно полезен на протяжении приблизительно трех столетий, что ученые, естественно, стремятся сохранить его.
Сохранение момента количества движения
Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии и одновременно вращаться. Любое тело, которое движется по окружности или вращается вокруг своей оси (например, Земля вращается вокруг своей оси и вокруг Солнца), обладает угловой скоростью и имеет угловой импульс, или момент количества движения. По аналогии с обычным импульсом можно также предположить, что момент количества движения равен угловой скорости, умноженной на массу [3]. Но это неверно. Вообразите, что вы стоите на вращающемся столике, держа в каждой руке по тяжелой гире и прижимая их к себе. Вы раскручиваетесь и, если столик вращается почти без трения, будете продолжать вращаться с примерно постоянной угловой скоростью довольно долго. Пусть, например, эта скорость равна двум оборотам в секунду. Если бы момент количества движения равнялся произведению массы на угловую скорость и если бы он сохранялся, вы могли бы изменить угловую скорость, меняя свою массу. Если бы, например, кто-нибудь взял гири из ваших рук, масса на вращающемся столике уменьшилась бы, а ваша угловая скорость увеличилась. Если бы вам в руки дали добавочный груз, ваша угловая скорость уменьшилась бы. Если бы момент количества движения зависел только от массы и угловой скорости, то вы, казалось, могли бы изменить угловую скорость, только изменяя массу.
Предположим, вы стоите на вращающемся столе, держа свои гири у туловища и делая два оборота в секунду. Выпрямите руки с гирями насколько возможно. Внезапно ваша угловая скорость уменьшится, и вы будете двигаться со скоростью, возможно, не более одного оборота в секунду. Прижмите руки опять к туловищу — и угловая скорость станет прежней.
Что же случилось? Ведь общая масса на столе не изменилась от того, что вы вытянули руки! Тогда почему же изменилась угловая скорость? Она должна измениться в ответ на определенные изменения в системе, зависящие не от величины массы. Логично предположить, что в момент количества движения входит расстояние массы от оси вращения. Расстояние части массы (ваших рук с гирями в них) от оси вращения увеличилось. Если это расстояние входит в момент количества движения, следует ожидать уменьшения угловой скорости, компенсирующего увеличение расстояния. Когда руки и гири опять прижаты к туловищу, их расстояние от оси вращения снова уменьшается и угловая скорость увеличивается, компенсируя это уменьшение.
Можно утверждать, что момент количества движения сохраняется, если его определять как произведение массы, угловой скорости и квадрата среднего расстояния массы от оси вращения. Тогда закон сохранения момента количества движения, нарушения которого никто никогда не наблюдал, можно сформулировать так: суммарный момент количества движения замкнутой системы остается постоянным.
Я говорю «суммарный момент количества движения» поскольку угловая скорость, так же как линейная, может иметь разные направления. Различают направление вращения по и против часовой стрелки. Если смотреть на Землю со стороны Северного полюса с большой высоты будет казаться, что она вращается против часовой стрелки.
Если два одинаковых шара вращаются вокруг своей оси со скоростью 10 оборотов в секунду, но один по часовой стрелке, а другой — против, то суммарная угловая скорость такой системы равна нулю. Поскольку шары имеют одинаковую массу, форму и строение, суммарный момент количества движения системы тоже равен нулю. Шары могут столкнуться так, что вращение одного погасит вращение другого. После соударения оба шара не вращаются, и момент количества движения системы снова равен нулю.
В эту книгу вошли три произведения Айзека Азимова, по праву признанные классикой НФ-литературы XX столетия. В романе «Конец вечности» повествуется о некой вневременной структуре, носящей название «Вечность», в которую входят специально обученные и отобранные люди из разных столетий. Задачей «Вечности» является корректировка судьбы человечества. В «Немезиде» речь ведётся об одноименной звезде, прячущейся за пыльной тучей на полдороге от Солнца до альфы Центавра. Человечеству грозит гибель, и единственный выход — освоение планеты Эритро, вращающейся вокруг Немезиды.
Роман в новеллах «Я, робот» относится к одной из самых важных работ в истории фантастики. Сформулированные Азимовым ТРИ ЗАКОНА РОБОТЕХНИКИ легли в основу науки об Искусственном интеллекте. Что случится, если робот начнет задавать вопросы своему создателю? Какие будут последствия программирования чувства юмора? Или возможности лгать? Где мы тогда сможем провести истинную границу между человеком и машиной? В «Я, робот» Азимов устанавливает свои Три Закона, придуманные для защиты людей от их собственных созданий, – и сам же выходит за рамки этих законов.
…Империя с высочайшим уровнем цивилизации. Ее влияние и власть распространены на десятки миллионов звездных систем Галактики. Ничто не предрекает ее краха в обозримом будущем…И вот однажды психоисторик Хари Сэлдон, создав математическую модель Империи, производит расчеты, которые неопровержимо доказывают, что через 500 лет Империя рухнет…Великий распад будет продолжаться 30 тысяч лет и сопровождаться периодом застоя и варварства. Однако Сэлдон создает План, в соответствии с которым появление новой Империи наступит всего через 1000 лет.
Из 1949 года Джозеф Шварц попадает в мир далёкого будущего – периода расцвета Галактической Империи. В результате древних термоядерных войн поверхность Земли стала радиоактивной и непригодной для жизни. В то же время люди расселились по всей Галактике и забыли о своей колыбели. Земля всего лишь камешек в небе. Ныне всё человечество живёт под управлением планеты Трантор, контролирующей двести миллионов звезд. Но на Земле ещё живы националистические настроения, некоторые земляне хотят вернуть себе власть предков.
Однажды, сидя в метро, Айзек Азимов просматривал сборник космических опер и наткнулся на картинку, изображавшую римского легионера среди звездолётов. В мозгу мелькнула мысль: а не описать ли Галактическую Империю — с точки зрения истории, экономики, социологии и психологии? Так появился самый великий учёный в истории мировой фантастики — Гэри Селдон, создавший науку психоисторию, постулаты которой актуальны уже более полувека. Так появился мир Академии: базовая трилогия о нём составила эту книгу. Так появилась "Галактическая история" от сэра Айзека, в которую входят почти все романы знаменитого фантаста.
…Империя с высочайшим уровнем цивилизации. Ее влияние и власть распространены на десятки миллионов звездных систем Галактики. Ничто не предрекает ее краха в обозримом будущем…И вот однажды психоисторик Хари Сэлдон, создав математическую модель Империи, производит расчеты, которые неопровержимо доказывают, что через 500 лет Империя рухнет…Великий распад будет продолжаться 30 тысяч лет и сопровождаться периодом застоя и варварства. Однако Сэлдон создает План, в соответствии с которым появление новой Империи наступит всего через 1000 лет.
В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.
Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.
Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру.
Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой.
Осенью 2008 года газеты запестрели заголовками, сообщавшими» будто в недрах Большого адронного коллайдера (БАК), на котором физики собирались расщепить вещество на элементарные частицы, родятся микроскопические черные дыры, способные поглотить Землю.Какое значение имеет БАК для науки? Что ученые ищут? Почему физика, возможно, вскоре совершит один из величайших рывков в своей истории? Все эти вопросы обсуждаются в книге «Коллайдер». Автор, кроме всего прочего, доказывает, почему невозможно ни практически, ни теоретически, что на БАК появятся черные мини-дыры, которых все так боятся.
Вернер Карл Гейзенберг (нем. Werner Heisenberg; 5 декабря 1901, Вюрцбург — 1 февраля 1976, Мюнхен) — немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат нобелевской премии по физике (1932). Умер в 1976 году от рака.
Знаменитый писатель-фантаст, с мировым именем, великий популяризатор науки, автор около 500 фантастических, исторических и научно-популярных изданий приглашает вас в увлекательное путешествие по просторам танин о происхождении и эволюции человека.Книга познакомит вас с удивительным миром человеческой природы и принципами классификации на расы и народы. Почему люди так отличаются друг от друга и чем объяснишь разницу в цвете кожи, глаз и волос? Что изучают таксономия и генетика? Чем отличается доминантный ген от рецессивного?Вы найдете ответы на эти и другие вопросы, а также узнаете о методах и характерных особенностях деления животного мира на различные группы, заглянете внутрь хромосомы и вместе с австрийским монахом Грегором Менделем проведете интересные эксперименты по скрещиванию растений.
В книге А. Азимова собраны ценнейшие научные данные из истории Англии. Повествование охватывает исторические события, начиная с ледникового периода и заканчивая временами Великой хартии вольностей. Автор исследует влияние других цивилизаций — римлян, викингов — на развитие политики, науки, религии и культуры этого государства.
Знаменитый фантаст и популяризатор науки сэр Айзек Азимов в этой книге решил окунуть читателя в магию чисел Свой увлекательный рассказ Азимов начинает с древнейших времен, когда человек использовал для вычислений пальцы, затем знакомит нас со счетами, а также с историей возникновения операций сложения, вычитания, умножения и деления Шаг за шагом, от простого к сложному, используя занимательные примеры, автор ведет нас тем же путем, которым шло человечество, совершенствуя свои навыки в математике.
Человек — частица биосферы! Именно из этого исходит великий популяризатор науки, подробно и увлекательно описывая строение и функции человеческого тела, повествуя о скелетном каркасе, мышцах, кровеносной и пищеварительной системах, а также о сердце, печени, легких, почках, репродуктивных органах и кожном покрове. Даже самые сложные анатомические термины ученый-фантаст разъясняет максимально доходчиво. Книга снабжена наглядными рисунками и комментариями научного редактора.