Невидимый конфликт - [37]
При увеличении изгибающего момента разрушение наступает со стороны растянутой зоны — она растрескивается, и элемент ломается. Однако, если вся растягивающая сила будет восприниматься сталью (что имеет место в железобетоне), элемент, несмотря на исключение растянутой зоны собственно бетона, сохраняет способность сопротивляться изгибу; более того, эта способность проявляется в своих истинных размерах. В конечном счете начинает наконец пластифицироваться и сжатая зона. Это происходит с того момента, когда диаграмма напряжений сильно приближается к форме прямоугольника.
Помимо прочности на растяжение и сжатие бетон обладает также прочностью на изгиб, срез, смятие и истирание. Каковы силовые воздействия, такова и прочность бетона. В отличие от древесины у бетона эти характеристики одинаковы во всех направлениях. Их величина определяется в лабораторных условиях после испытания большого числа образцов. Однако неоднородная структура бетона оказывает сильное влияние на устойчивость этих характеристик. Разные результаты получаются даже при испытании одинаковых образцов из бетона одного качества, одного возраста и одинаковых условий «дозревания».
Поэтому график на рис. 13 следует воспринимать как весьма условный. Он относится к некоему среднестатистическому образцу, которого реально вообще может не быть в серии. Примерно при восьмом опыте разрушение наступило при напряжении 170 кг/см>2,а при 88-м — при напряжении 110 кг/см>2. Варианты среднего значения приданной степени вероятной надежности даются с так называемым коэффициентом однородности. У сталей этот коэффициент близок к единице, тогда как у бетона его величина составляет 0,5—0,6, что тем не менее воспринимается чуть ли не с восторгом.
Точно такое же запутанное положение и с деформациями. Средняя деформация разрушения при сжатии (см. рис. 13) равна 0,2%. Но ведь деформации такого порядка у стали и дерева являются рабочими, конструктивно целесообразными! Следовательно, в отличие от этих двух материалов, которые с деформационной точки зрения реализуют 50—60% своих возможностей, бетон может работать в элементах и конструкциях в пределах всей своей рабочей диаграммы без опасности чрезмерных деформаций и провисания. Поэтому из бетона можно «выжать» все, на что он способен (разумеется, в рамках регламентированной степени надежности).
В результате экспериментов установлено, что независимо от скорости нагрузки конечные деформации в бетоне остаются одинаковыми. Просто при быстром увеличении и последующем сохранении нагрузки создается возможность сравнительно независимого проявления сначала упругих, а затем пластических деформаций (см. рис. 14), тогда как при плавном, постепенном нагружении материала два вида деформаций (упругие и пластические) проявляются одновременно, и рабочая диаграмма представляет собой сильно изогнутую кривую (см. рис. 13). Однако в обоих случаях разрушение происходит при предельной деформации сжатия, которая в среднем составляет 0,2%. При нагрузке на растяжение предельная деформация приблизительно равна 0,02%, да и то лишь у бетона достаточно высокой марки. Если теперь мы разделим одну из приведенных величин на другую, то получим роковое отношение 1:10 в пользу сжатия.
Основной прочностью бетона считается так называемая кубиковая прочность. Согласно стандартам НРБ, образцами для испытания бетона служат бетонные кубики со стороной 20 см, выдержанные при температуре 15—20°С и влажности воздуха около 60%. Образцы испытываются на сжатие на 28-й день после изготовления. Полученная прочность определяет так называемую марку бетона. Стандартными марками обычного тяжелого бетона, согласно нормам НРБ, являются: 50, 75, 100, 150, 200, 300, 400, 500 и 600. Например, бетон марки 200—это бетон, стандартные кубики которого при испытаниях обнаружили среднюю прочность 200 кг/см>2.
При проектировании марка бетона выбирается в зависимости от характера конструкции и технико-экономических условий. Для чисто бетонных элементов и конструкций (основания, фундаменты, подпорные стенки и т. д.) чаще всего используется бетон марок 150—200, для обычных железобетонных конструкций — 150—200, реже 300, а для предварительно напряженных конструкций — 400 и выше.
В заключение разговора о бетоне еще раз подчеркнем, что его главное достоинство — высокая прочность на сжатие, а основной недостаток — низкое сопротивление растяжению. Но, как мы убедимся позже, эта «болезнь» излечима, поскольку в наши дни в строительстве наиболее широко применяется не обычный, а армированный бетон, т. е. железобетон. И если часто бетон, армированный сталью, называют материалом XX в., это не преувеличение, так как именно из железобетона строится основная часть всех зданий и сооружений на нашей планете. В замыслах, проектах и реализованных конструкциях он приобретает формы, которые невозможны при использовании любого другого материала, — формы, которых не знает ни природа, ни история. Подобно тому как дети лепят из пластилина самые необычные фигурки, инженер-строитель «лепит» из этого замечательного материала свои конструкции, воплощает свои новые идеи, реализует в нем свои концепции. В этом таинственном процессе сложнейшим образом переплетаются соображения красоты и надежности, рациональности и технической целесообразности. Здесь человек должен быть одновременно скульптором, физиком и инженером. Разве неприятно облекать свои идеи в подходящий пластичный материал, который быстро превращается в прочный монолит? Этот процесс более чем приятен — он восхитителен.

Новая книга профессора Московского университета Г. А. Федорова-Давыдова написана в научно-популярной форме, ярко и увлекательно. Она представляет собой очерки истории денежного дела в античных государствах Средиземноморья, средневековой Западной Европе, странах Востока, на Руси (от первых «златников» и «сребреников» князя Владимира до реформ Петра 1)„ рассказывается здесь также о монетах нового времени; специальный раздел посвящен началу советской монетной чеканки. Автор показывает, что монеты являются интересным и своеобразным историческим источником.

Книга в легкой и доступной форме рассказывает об истории электротехники и немного касается самого начального этапа радиотехники. Автор дает общую картину развития знаний об электричестве, применения этих знаний в промышленности и технике. В книге содержится огромное количество материала, рисующего как древнейшие времена, так и современность с её проблемами науки и техники. В русской литературе — это первая попытка дать читателю систематическое изложение накопленных в течение веков фактов, которые представляют грандиозный путь развития учения об электричестве и его практического применения.

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.

Сорняки — самые древние и злостные враги хлебороба. Зеленым пожаром охвачены в настоящее время все земледельческие районы земного шара. В книге рассказывается об истории и удивительной жизненной силе сорных растений, об ожесточенной борьбе земледельца с сорняками и путях победы над грозным противником. - Книга в увлекательной и популярной форме рассказывает о борьбе с самым древним и злостным врагом хлеборобов — сорняками (первое издание — 1981 г). В ней даны сведения об истории и биологии сорняков, об их взаимоотношениях с культурными растениями.

Пчелы гораздо древнее, чем люди: когда 4–5 миллионов лет назад предшественники Homo sapiens встретились с медоносными пчелами, те жили на Земле уже около 5 миллионов лет. Пчелы фигурируют в мифах и легендах Древних Египта, Рима и Греции, Индии и Скандинавии, стран Центральной Америки и Европы. От повседневной работы этих трудолюбивых опылителей зависит жизнь животных и людей. Международная организация The Earthwatch Institute официально объявила пчел самыми важными существами на планете, их вымирание будет означать конец человечества.

Многие традиционные советы о том, как преуспеть в жизни, логичны, обоснованны… и откровенно ошибочны. В своей книге автор собрал невероятные научные факты, объясняющие, от чего на самом деле зависит успех и, что самое главное, как нам с вами его достичь. Для широкого круга читателей.