Нераскрытые тайны природы - [78]

Шрифт
Интервал

М. Каку отмечает также, что пока никому не удалось внятно объяснить, почему в теории суперструн следует использовать либо 10, либо 26 измерений. В противном случае уравнения теоретиков «распадаются» (вот почему Шелдон Глэшоу ссылался на «магические числа»). Ситуация еще более осложнилась, когда оказалось, что следует, возможно, рассматривать не 10-мерное, а 11-мерное пространство за счет введения в дополнение к эйнштейновской второй временной координаты.

Большинство ведущих физиков пришли к выводу, что теория струн либо станет физической теорией, позволяющей решить все загадки физики и окончательно объединить вселенные Ньютона и Эйнштейна с квантовой теорией, либо окажется «ловушкой», гигантским теоретическим «блефом». Нельзя забывать, что в физике всегда были ошибочные направления, причем некоторые из них существовали очень долго. Например, восходящая к Аристотелю геоцентрическая модель строения Солнечной системы господствовала в науке почти два тысячелетия. Как правило, ошибочность теорий выясняется гораздо раньше, чем об этом узнает широкая общественность, но теория струн уже привлекла всеобщее внимание, и, если завтра обнаружится ее ошибочность, многие физики сами захотят спрятаться в дополнительных измерениях. Впрочем, решение проблемы может затянуться, и загадка теории струн будет решена с появлением новых технологий или совершенно новых математических теорий лишь через несколько десятилетий.

В 1884 г. была опубликована известная математическая фантазия Эдвина А. Аббота «Флатландия», в которой описан воображаемый двумерный мир. На рисунке автора показано, как обитатель Флатландии (по имени А. Квадрат) пытается описать миры с другим числом измерений (на рисунке изображен одномерный мир, Лайнландия). Героя ждет трагический конец из-за попыток доказать согражданам возможность существования трехмерного мира.

Литература для дальнейшего чтения

 1. Green, Brian. The Elegant Universe. New York: Norton, 1999. Наиболее полное описание современного состояния теории струн, которое можно, однако, рекомендовать даже неподготовленному читателю. Б. Грин является одним из крупнейших специалистов в этой области и знает массу интересных подробностей. Книга выделяется не только блестящим стилем, но и исключительной объективностью автора, доводящей его временами почти до абсурда (например, предвидя возражения читателя, он временами начинает оспаривать собственные аргументы). Книга написана в очень ясной и последовательной манере, но требует от читателя достаточного внимания и интереса.

2. Kaku, Michio. Hyperspace. New York: Oxford University Press, 1994. Книга снабжена обширным подзаголовком «Научная Одиссея в параллельных мирах. Искривления времени и дополнительные измерения». Эта книга менее научна, чем работа Б. Грина, и написана в более легкой манере. К ее достоинствам можно отнести умение автора находить интересные и даже шутливые аналогии теории струн в других областях человеческой деятельности (например, в литературе).

3. Ferris, Timothy. The Whole Shebang. New York: Simon & Shuster, 1997. Как уже отмечалось, Феррис является одним из лучших и наиболее известных популяризаторов науки в США, особенно в области физики. Он лично относится к теории струн несколько иронично (в чем, кстати, автор данной книги целиком к нему присоединяется), но основные факты и идеи исследований изложены достаточно полно.

4. Abbott, Edwin A. Flatland: A Romance of Many Dimensions. Mineola, NY: Dover, 1992.

Глава 21.

Что ожидает Вселенную?

Наше Солнце существует около 4,6 миллиарда лет, что соответствует примерно половине возраста звезд данного типа. Оно похоже на миллионы звезд, рождающихся, развивающихся и умирающих во Вселенной. Астрономы хорошо изучили процессы, протекающие в родившихся ранее звездах, и достаточно детально представляют себе заключительную фазу жизни нашего Солнца. На протяжении первых четырех миллиардов лет в Солнце выгорает водородное горючее. По мере его выгорания звезда сжимается в размерах, но на определенном этапе обретает «второе дыхание» — в ней начинаются процессы термоядерного синтеза, при которых из трех ядер гелия образуются ядра углерода-12. Благодаря этому горючему Солнце может прожить еще два миллиарда лет. Однако при этом Земля неизбежно погибнет, поскольку из-за реакций синтеза размеры Солнца увеличатся примерно в сто раз, и оно, буквально испепелив нашу планету, превратится в так называемый красный гигант. Затем по мере выгорания гелия и его превращения в углерод Солнце снова начнет уменьшаться в размерах и обратится в тусклый белый карлик. Спустя еще несколько миллионов лет этот белый карлик постепенно остынет и трансформируется в мертвую звезду, называемую черным карликом.

В этом сценарии имеется проблема, которую можно было бы назвать «Делом о пропаже солнечных нейтрино». Еще в 1920-е годы, изучая спектр электронов при радиоактивном распаде, физики обнаружили нарушение энергетического баланса. Для спасения закона сохранения энергии Вольфганг Паули в 1931 г. предположил, что в распаде участвуют некие «призрачные» элементарные частицы, уносящие часть энергии. Эти похитители энергии не обладают электрическим зарядом. Их назвали нейтрино, но прошло два десятилетия, прежде чем существование нейтрино было доказано экспериментально. Оказалось, что существует три типа нейтрино, различающихся квантовым числом, условно названным «аромат».


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Что, если Ламарк прав? Иммуногенетика и эволюция

Анализируя данные о строении и функционировании генов иммуноглобулинов, известные австралийские ученые высказывают гипотезу о том, что эволюция генов иммунной системы позвоночных могла осуществляться по Ламарку, т.е. путем наследования приобретенных признаков. Популярное изложение устройства и функционирования иммунной системы. Формирование специфических антител против новых возбудителей методом соматического мутирования "вариабельных участков" генов иммуноглобулинов и отбора наиболее удачных вариантов новых антител.