Неопределенный электрический объект. Ампер. Классическая электродинамика. - [34]

Шрифт
Интервал


Френель назвал изменение позиции ученого «обращением Ампера в волновую оптику». Но в 1816 году ничто не могло склонить чашу весов в пользу Френеля и Араго или Лапласа и Био. Ампер работал вместе с Френелем до 1820 года, а потом обратился к электродинамике. Однако в 1828 году он опубликовал свою вторую работу по оптике под названием «Сообщение об искривлении световых волн в среде с иной эластичностью согласно трем главным направлениям, то есть тем, в которых сила, производимая эластичностью, распространяется в том же направлении, что и перемещение молекул этой среды». Работа была посвящена недавно умершему Френелю. Последующее развитие оптики было связано с этими двумя теориями, корпускулярной и волновой, которые в итоге объединились в корпускулярно-волновой дуализм.


ОПЫТ С ДВОЙНОЙ ЩЕЛЬЮ

Опыт Юнга с двойной щелью доказал волновую природу света. Ампер принял эту теорию благодаря Френелю. Юнг поставил барьер между экраном и источником света. В качестве барьера выступал картон, в котором были сделаны две прорези, очень тонкие и расположенные рядом друг с другом. Юнг доказал, что при прохождении света сквозь каждую из щелей (точки А и В) эти щели сами становились источниками света, как это уже доказал ранее Гюйгенс. На схеме внизу из каждой щели исходят концентрические круги, изображающие распространение волн, испускаемых из А и В. По мере объединения волн образуется схема интерференции. Интерференция является не чем иным, как суперпозицией волн (в этом случае двух), которая может вызывать две ситуации. В случае конструктивной интерференции (С, D, Е и F) интенсивность света достигает максимума. В случае деструктивной интерференции (пространство между точками С, D, Е и F) интенсивность света нулевая. В итоге на экране можно наблюдать чередование светлых и темных полос.


Несколько соображений

Сам Юнг советовал наблюдать проекцию на бумаге. Чтобы опыт получился, нужно учесть три фактора: ширину щели (меньше 1 миллиметра), расстояние между щелями (около 1 миллиметра), расстояние между барьером и экраном (около 1 метра). Ширина щелей должна быть меньше расстояния между ними, а расстояние до экрана должно быть значительно большим.

Схема интерференции, схожей с той, которую наблюдал Юнг. Явление можно наблюдать в точках С, D, Е, F.


СТРАСТНЫЙ ФИЛОСОФ

Философские размышления занимали Ампера на протяжении всей его жизни. В Париже философия и психология заполнили пустоту, возникшую после смерти его жены. Окружение Ампера было, с одной стороны, философским, а с другой — математическим. Он искал ответы, которых наука не могла ему дать, поэтому углублялся в умозрительные философские построения. Наука в начале XIX века имела много общего с наукой XXI века, когда осторожность вынуждает проверять любую выдвигаемую гипотезу. Однако интеллект Ампера не позволял ему оставить место для сомнения: «Сомнение есть величайшее из зол, терзающих человека на земле!» — полагал он. Подобное суждение далеко от современных представлений: именно сомнение и изучение аномального стимулируют научный прогресс. Несмотря ни на что Ампер продолжал следовать в работе научному методу, не поддаваясь тяге к иррациональному. Он прекрасно объединял научный поиск и духовные искания.

Философские размышления Ампера рассыпаны по его многочисленным письмам и документам. Они нигде не собраны и не напечатаны целиком, поэтому их изучение затруднительно. Как уже говорилось, Ампер не был профессиональным философом, философия стала его увлечением, к которому, однако, у него был талант. Философские искания ученого делятся на два периода: с 1803 по 1819 год и с 1829 по 1836 год.

В первый период Ампер интересовался возможностью получения научного знания как о видимом, так и о невидимом мире. Его первое исследование состоялось под влиянием философии. Приехав в 1804 году в Париж, Ампер познакомился с философом Меном де Бираном, с которым у него установились глубокие интеллектуальные и личные отношения. Мы уже упоминали о Биране в связи с неудачным вторым браком Ампера. Этот философ ввел Ампера в круг Дестюта де Траси, в котором обсуждались механизмы познания. Биран не только направлял Ампера в философских исканиях, но и стал на многие годы его другом. Однако ученик, в свою очередь, также сильно повлиял на учителя. Мен де Биран даже опубликовал книгу о теории познания под названием «Разговоры с Ампером и Дежерандо».

Вторым философом, оказавшим влияние на Ампера, был Иммануил Кант (1724-1804). Ампер, даже не принимая всех построений философа, по достоинству оценил глубину кантовского понимания научной истины. Также Ампер интересовался эпистемологией и изучал различие между феноменом и ноуменом, введенное Кантом. Ноумен — это заимствованное из греческого понятие, которое означает «нечто мыслимое», или «то, что мы намереваемся сказать». Противоположность ноумена — знакомый нам феномен. Феномену мы придаем форму, он не совпадает с вещью в себе, а то, что вытекает из него, будет ноуменом. Сам факт, что наше познание основано на феноменах, не означает, что оно ошибочно или иллюзорно. Ампер познакомился с этим разграничением по французскому переводу «Диссертации 1770 года» Канта. Однако в переводе было много ошибок, и Ампер не смог правильно истолковать новые для него понятия. Переписка Ампера с Меном де Бираном показывает, что ученый много работал над собственным видением мира. Все эти письма относятся к первому периоду интереса Ампера к философии. Одновременно он преподавал логику в Нормальной школе (1817) и философию на филологическом факультете (1819). Открытие Эрстеда положило конец этому периоду.


Еще от автора Эугенио Мануэль Фернандес Агиляр
Эврика! Радость открытия. Архимед. Закон Архимеда

Архимед из Сиракуз жил в эпоху войн, поэтому не удивительно, что часть своего дарования он направил на создание машин, призванных защитить его родной город. Ученый внес серьезный вклад в эту сферу деятельности, впрочем, как и во все другие, входящие в круг его интересов: математику, физику, инженерное дело, астрономию... Он вычислил площадь сегмента параболы с помощью метода, который можно считать предвестником интегрального исчисления. Он открыл физические законы работы рычага и даже осмелился сосчитать количество песчинок, которыми можно заполнить Вселенную, — такое огромное число, что Архимеду пришлось изобретать собственный способ его записи! Но более всего древнегреческого ученого прославило открытие закона гидростатики, носящего теперь его имя.


Рекомендуем почитать
Строки, имена, судьбы...

Автор книги — бывший оперный певец, обладатель одного из крупнейших в стране собраний исторических редкостей и книг журналист Николай Гринкевич — знакомит читателей с уникальными книжными находками, с письмами Л. Андреева и К. Чуковского, с поэтическим творчеством Федора Ивановича Шаляпина, неизвестными страницами жизни А. Куприна и М. Булгакова, казахского народного певца, покорившего своим искусством Париж, — Амре Кашаубаева, болгарского певца Петра Райчева, с автографами Чайковского, Дунаевского, Бальмонта и других. Книга рассчитана на широкий круг читателей. Издание второе.


Октябрьские дни в Сокольническом районе

В книге собраны воспоминания революционеров, принимавших участие в московском восстании 1917 года.


Тоска небывалой весны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Прометей, том 10

Прометей. (Историко-биографический альманах серии «Жизнь замечательных людей») Том десятый Издательство ЦК ВЛКСМ «Молодая гвардия» Москва 1974 Очередной выпуск историко-биографического альманаха «Прометей» посвящён Александру Сергеевичу Пушкину. В книгу вошли очерки, рассказывающие о жизненном пути великого поэта, об истории возникновения некоторых его стихотворений. Среди авторов альманаха выступают известные советские пушкинисты. Научный редактор и составитель Т. Г. Цявловская Редакционная коллегия: М.


Еретичка, ставшая святой. Две жизни Жанны д’Арк

Монография посвящена одной из ключевых фигур во французской национальной истории, а также в истории западноевропейского Средневековья в целом — Жанне д’Арк. Впервые в мировой историографии речь идет об изучении становления мифа о святой Орлеанской Деве на протяжении почти пяти веков: с момента ее появления на исторической сцене в 1429 г. вплоть до рубежа XIX–XX вв. Исследование процесса превращения Жанны д’Арк в национальную святую, сочетавшего в себе ее «реальную» и мифологизированную истории, призвано раскрыть как особенности политической культуры Западной Европы конца Средневековья и Нового времени, так и становление понятия святости в XV–XIX вв. Работа основана на большом корпусе источников: материалах судебных процессов, трактатах теологов и юристов, хрониках XV в.


Фернандель. Мастера зарубежного киноискусства

Для фронтисписа использован дружеский шарж художника В. Корячкина. Автор выражает благодарность И. Н. Янушевской, без помощи которой не было бы этой книги.


На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.