Неопределенный электрический объект. Ампер. Классическая электродинамика. - [13]
В 1806 году Ампер опубликовал один из своих докладов о производных функциях с длинным названием: «Исследование некоторых аспектов теории производных функций, ведущее к новому доказательству рядов Тейлора и конечному выражению бесконечно ничтожных показателей при прерывании рядов через какой бы то ни было показатель». Теорема Тейлора была сформулирована английским математиком Бруком Тейлором (1685-1731) в 1712 году.
В работе Ампера ощущалась нехватка метода системной организации определений, аксиом и теорем, который в дальнейшем разовьет один из его коллег, математик Огюстен Луи Коши (1789-1857).
Эту работу можно рассматривать как набросок к более позднему исследованию уравнений в частных производных. Ее целью было изменение подхода Лагранжа, по поводу которого в Политехнической школе в 1799 году состоялось множество конференций. Лагранж опубликовал свой труд в 1804 году под названием «Лекции об исчислении функций». Он определял производную функции через ее разложение в ряд Тейлора и рассчитал выражение для остаточного члена, приблизив функцию через усечение разложения до данного члена. Другими словами, Лагранж использовал понятие производной функции, не вводя понятия предела.
Ампер дополнил подход Лагранжа: он дал новое определение производной и предложил новую формулу для разложения в ряд Тейлора, по-прежнему не используя понятия предела.
Определение, предложенное Ампером в его статье 1806 года, основывается, как мы можем видеть, на алгебре.
Производная функции f(x) — функция от х следующего вида:
f(x + i)-f(x)/i
Она всегда лежит между двумя значениями производной функции, взятыми между х и х + г/, какими бы ни были x и y.
Андре-Мари Ампер называл частной функцией приращения частное, возникающее в данном ниже определении. Прежде чем дать определение в тексте, он объяснял, откуда появлялись эти выражения:
«Эта функция (приращения), которая очевидным образом зависит от ƒ(x) и которую господин Лагранж назвал вследствие этого ее производной функцией, является, как мы знаем, очень важной в математике, особенно в геометрии, и механике; мы запишем ее, как делал этот блестящий математик, в виде ƒ(x), и нашей первой целью будет доказательство ее существования».
На самом деле при i = 0 мы получаем неопределенность вида 0/0. Но Ампер доказал, что эта неопределенность может иметь какое угодно значение, не только 0 или бесконечность; он доказал существование частного приращения, уточнив его определение. При этом Ампер не рассматривал возможность, когда i стремится к нулю, а ограничился ситуацией, когда i равно нулю; в некотором роде ученому не хватило понятия предела. Потом он проверил свое определение, применив его к тригонометрическим функциям. Он расширил использование определения, с тем чтобы доказать, что теорема Тейлора, несмотря на ее сложность, является релевантной. Исследование заканчивается обобщением подхода Ампера к функциям с двумя переменными, что является предвестием большего математического труда под названием «Общие рассуждения об интегралах в дифференциальных уравнениях в частных производных», опубликованного в 1815 году в журнале Политехнической школы.
Ряд Тейлора — это бесконечная сумма выражений, содержащих производные функции f(x) всех порядков. Ряд Тейлора функции f(x) в окрестности точки х = а записывается в виде следующего степенного ряда:
>∞
f(x)=f(a) + f'(a)/1!(х - а)+f"(a)/2!(х - а)2+f'"(a)/3!(х - а)3+...Σf>(n)(a)/n!(х - а)>n
>n=0
Чем больше степень, тем точнее приближение функции; иными словами, приближение улучшается по мере добавления членов ряда. Напомним, что n! — это факториал, математический оператор, который является произведением всех натуральных чисел от 1 до n включительно. Например: 4! = 4 х 3 х 2 х 1 = 24. Случай приближения функции синуса окрестности точки х = 0 простой, потому что все четные производные обнуляются (см. рисунок):
f(x) = х - x>3/3! + x>5/5! ...
Отсюда мы можем вывести теорему Тейлора, которую обобщил шотландский математик и астроном Джеймс Грегори (1638-1675). Эта теорема гласит, что дифференцируемую функцию в окрестности точки можно приблизить многочленом, коэффициенты которого зависят от производных функции в данной точке. Этот многочлен является не чем иным, как усеченны рядом Тейлора, дополненным суммой членов более высоких порядков:
f(x)=f(a) + f'(a)/1!(х - а)+f"(a)/2!(х - а)>2+...+f>(n)(a)/n!(х - а)>n + R>n(f).
Разные линии отображают приближения 1, 3 и 5-й степени. Естественно, приближение 5-й степени лучше описывает функцию в точке 0.
В начале XIX века уравнения в частных производных (также называемые уравнениями в частных дифференциалах) вызывали большой интерес. Их изучение было связано с некоторыми проблемами физики — в частности, с волновыми уравнениями и уравнениями распространения тепла. При этом имена Лапласа, Коши, Пуассона и Фурье знакомы студентам физических и инженерных факультетов, однако вряд ли они слышали имя Ампера в связи с этими научными дисциплинами. Дело в том, что Ампер больше занимался классификацией уравнений, нежели решением конкретных физических проблем. Его система классификации уравнений в частных производных была хорошо принята, однако ее быстро превзошла система немецкого математика Поля Давида Густава Дюбуа-Реймона (1831-1889), и даже современные математики используют его терминологию. Превосходство системы немецкого математика объясняется очевидными пробелами в работе Ампера. Определения, предложенные французским ученым, неточны, обозначения сложны, теоремы не выстроены по степени важности, а примеры не развернуты. И все же оригинальность работы Ампера была замечена научным сообществом, и ему в 1815 году предложили стать членом Французской академии наук. Работы Ампера были высоко оценены и шотландским математиком Эндрю Расселом Форсайтом (1858-1942), известным среди историков науки благодаря своим многочисленным трактатам. В прекрасном девятитомнике под названием «Теория дифференциальных уравнений» (1890-1906) Форсайт неоднократно упоминает Ампера и положительно оценивает его вклад в изучение дифференциальных уравнений:
Архимед из Сиракуз жил в эпоху войн, поэтому не удивительно, что часть своего дарования он направил на создание машин, призванных защитить его родной город. Ученый внес серьезный вклад в эту сферу деятельности, впрочем, как и во все другие, входящие в круг его интересов: математику, физику, инженерное дело, астрономию... Он вычислил площадь сегмента параболы с помощью метода, который можно считать предвестником интегрального исчисления. Он открыл физические законы работы рычага и даже осмелился сосчитать количество песчинок, которыми можно заполнить Вселенную, — такое огромное число, что Архимеду пришлось изобретать собственный способ его записи! Но более всего древнегреческого ученого прославило открытие закона гидростатики, носящего теперь его имя.
Герой Советского Союза генерал армии Николай Фёдорович Ватутин по праву принадлежит к числу самых талантливых полководцев Великой Отечественной войны. Он внёс огромный вклад в развитие теории и практики контрнаступления, окружения и разгрома крупных группировок противника, осуществления быстрого и решительного манёвра войсками, действий подвижных групп фронта и армии, организации устойчивой и активной обороны. Его имя неразрывно связано с победами Красной армии под Сталинградом и на Курской дуге, при форсировании Днепра и освобождении Киева..
В первой части книги «Дедюхино» рассказывается о жителях Никольщины, одного из районов исчезнувшего в середине XX века рабочего поселка. Адресована широкому кругу читателей.
Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.
Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.
Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.
Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.
Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.
Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.
Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.
Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.