Неизбежность странного мира - [7]

Шрифт
Интервал

Толща свинца поглощала рентгеновские и радиоактивные лучи. А электроскоп разряжался! Было над чем задуматься.

Сначала физики махнули рукой — «ошибки опыта». Но эти мнимые ошибки повторялись с такой регулярностью и однообразием, что досада физиков на несовершенство приборов вскоре сменилась острейшим любопытством. Возникла самая естественная для той поры мысль: существуют еще какие-то сверхпроникающие, сверхэнергичные лучи, для которых и толща свинца не преграда.

Что же они такое, эти дьявольские лучи? Как велика их чудовищная энергия? Откуда они приходят? Простые вопросы сменились сложными.

Поначалу новые предполагаемые лучи вовсе не считали космическими. Им приписывалось земное — почвенное — происхождение. Но отсюда немедленно следовал простой и легко проверяемый вывод: рождаясь в земной коре и пробиваясь сквозь толщу атмосферы снизу, они должны были терять энергию с высотой и все слабее ионизировать газ в замкнутой камере электроскопа. «Дух приключений» погнал ученых в горы — пешком, на лошадях, на машинах. И за облака — в зыбких гондолах воздушных шаров.

И вот тут-то оказалось, что все происходит так, словно небо и земля поменялись местами: с высотой электроскоп разряжался все быстрее, как если бы он не удалялся от источника лучей, а приближался к нему! В 1910 году австрийский физик Гесс, побывав на пятикилометровой высоте, впервые обоснованно высказал мысль, что это вовсе не земные, а «высотные лучи». Потом, уже после вынужденного бесплодья тяжелых лет первой мировой войны, когда большинству физиков пришлось заниматься не своим делом, немец Кольхерстер поднялся на аэростате до высоты в двенадцать километров и установил, что там, за облаками, ионизация в 30 раз сильнее, чем на уровне моря!

Стало несомненным, что всепроникающие лучи приходят к нам откуда-то из мировых глубин. Еще ничего не зная об их составе и повадках, кроме того, что энергия их по нашим земным масштабам огромна, физики с полным правом назвали их космическими. Так началась сорокалетняя история их всестороннего исследования. Она продолжается и сегодня. И будет продолжаться завтра, потому что никогда и ни о чем нельзя узнать всего или хотя бы достаточно много. И еще потому, что космические лучи интересуют всех.

Астрофизики и радиоастрономы ищут источники их происхождения. Радиотехникам и метеорологам важна их роль в ионизации земной атмосферы. Биологам и врачам нужно знать их действие на живую природу и человека. Неограниченный круг вопросов связан с космическими лучами, начиная с проблемы отклонения их в магнитном поле Земли и кончая статистикой раковых заболеваний.

Но нам нужно взглянуть на них только глазами физиков-ядерщиков. И даже еще ограниченней — глазами физиков-элементарщиков (правда, такого слова еще нет в обиходе, однако рано или поздно оно, наверное, появится, как появилось уже слово «ядерщик» вслед за словом «атомщик»).

9

К подземным и высокогорным лабораториям ныне присоединились космические лаборатории на спутниках. Там приборы имеют дело с космическими лучами как бы «в чистом виде», еще не успевшими претерпеть никаких злоключений на своем пути через воздушный океан, окружающий Землю.

В этих первичных космических лучах были обнаружены ядра едва ли не всех устойчивых элементов. И можно говорить просто о химическом составе первичных лучей. Этот состав только приблизительно отражает относительную распространенность разных элементов во всей видимой вселенной вокруг нас. Чем тяжелее ядра, тем реже они попадаются. Ядер обыкновенного водорода — протонов — подавляюще много. Заметно меньше альфа-частиц — ядер следующего легкого элемента — гелия. Еще меньше ядер углерода, азота, кислорода, железа… Отступления от «нормы» — например, «слишком большой» процент лития, бериллия, бора — наводят физиков на интересные размышления о ядерных реакциях в мировом пространстве, в результате которых возникает, очевидно, «избыток» этих элементов. Такие отступления от ожидаемого помогают ученым строить гипотезы о происхождении космического излучения.

Однако оставим первичные лучи, оставим атомные ядра. Истинным заповедником элементарных частиц, где многие из них были впервые открыты, оказались вторичные космические лучи — те, что образуются в земной атмосфере, когда кончаются странствия первичных, прокладывающих себе путь сквозь толпу крупинок атмосферного вещества.

По справедливости эти вторичные лучи уже нельзя называть космическими. Они вполне земного происхождения. Не будь атмосферы — не было бы и этих лучей: первичным частицам из космоса не с кем было бы сталкиваться в пути. Но, с другой-то стороны, не будь первичных луней, не врывайся они к нам из недр мирового пространства, откуда взялись бы в земной атмосфере частицы колоссальных энергий? А именно такие, разогнанные до громадных скоростей частицы способны акт простого столкновения с веществом превращать в чудо рождения новых частиц. У лучей вторичных как бы двойное подданство: и космическое и земное. Космос дает бьющий молот, Земля — наковальню, искры — вторичные лучи.

В наши дни физики взяли на себя роль самого космоса, создавая искусственные земные ускорители заряженных частиц. Замечательно, что они решились на это, вовсе не зная доподлинно того способа, каким во вселенной ускоряются протоны и другие ядра: окончательного ответа на этот вопрос нет до сих пор.


Еще от автора Даниил Семенович Данин
Нильс Бор

Эта книга — краткий очерк жизни и творчества Нильса Бора — великого датского физика-мыслителя, создателя квантовой теории атома и одного из основоположников механики микромира. Современная научная мысль обязана ему глубокими руководящими идеями и новым стилем научного мышления. Он явился вдохновителем и главой интернациональной школы физиков-теоретиков. Замечательной была общественная деятельность ученого-гуманиста — первого поборника международного контроля над использованием ядерной энергии, борца против политики «атомного шантажа»Книга основана на опубликованных ранее материалах, обнаруженных автором в Архиве Н. Бора и в Архиве источников и истории квантовой физики в Копенгагене.


Вероятностный мир

14 декабря 1900 года впервые прозвучало слово «квант». Макс Планк, произнесший его, проявил осторожность: это только рабочая гипотеза. Однако прошло не так много времени, и Эйнштейн с завидной смелостью заявил: квант — это реальность! Но становление квантовой механики не было спокойно триумфальным. Здесь как никогда прежде драма идей тесно сплеталась с драмой людей, создававших новую физику. Об этом и рассказывается в научно–художественной книге, написанной автором таких известных произведений о науке, как «Неизбежность странного мира», «Резерфорд», «Нильс Бор».


Резерфорд

Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).


Рекомендуем почитать
Знание-сила, 2009 № 09 (987)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 11 (977)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 02 (968)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2007 № 02 (956)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 1999 № 04 (862)

Ежемесячный научно-популярный н научно-художественный журнал для молодежи.


Популярная палеогеография

Автор рассказывает о достижениях палеогеографии — науки, изучающей физико-географические условия минувших геологических эпох. История Земли и жизни на ней, от самого образования планеты до современности; дрейф материков и новая глобальная тектоника; процессы горообразования и климат прошлых эпох — вот только некоторые из тем, которым посвящена эта увлекательная книга.