Неизбежность странного мира - [54]

Шрифт
Интервал

Однако среди физиков он слыл непогрешимым.

Тогда же, когда разрабатывал он теорию бета-распада радиоактивных атомов, его мысль уже занимали многообещающие опыты с нейтронами. Он решил бомбардировать ими все химические элементы подряд и скоро обнаружил, что многие атомные ядра, захватывая нейтроны, теряют свою устойчивость. Они становятся искусственно радиоактивными. Такую радиоактивность открыли незадолго до этого Ирен и Фредерик Жолио-Кюри, так что, казалось бы, уже нечему было удивляться. По простой и очевидной логике считалось: чем энергичней бомбардирующие частицы, тем вероятней, что они заставят атомы стать неустойчивыми. Но в римской лаборатории Ферми открылось и нечто прямо противоположное: замедленные нейтроны вызывали больший эффект, чем быстрые. Это выглядело чудом.

Первым заметил «чудо» молодой Бруно Понтекорво. Ему было тогда 25 лет. Впрочем, в римской лаборатории в ту пору все были такими же молодыми, как и ядерная физика. Даже самому «папе» — Энрико Ферми — было немногим больше тридцати. И экспериментировали там весело — с молодой нетерпеливостью и находчивостью, очень по-итальянски.

По-итальянски? Нет, вряд ли это был национальный стиль. Теперь, когда Бруно Понтекорво стал для своих коллег Бруно Максимовичем Понтекорво, членом-корреспондентом Академии наук СССР, ученым с мировым именем, он — руководитель тонких экспериментальных (работ в одной из лабораторий Дубны — может видеть вокруг себя те же черты гибкой веселой изобретательности советских молодых ученых-атомников, для которых он уже сам теперь «папа». Это — интернациональные черты молодости в науке, когда исследователи полны сознания, что они делают историю и верят в будущее.

Осенью 1934 года Энрико Ферми вместе с Бруно Понтекорво и другими учениками опускал источник нейтронов и облучаемый ими цилиндрик из серебра в бассейн с золотыми рыбками. Там, у старого фонтана в саду за стенами лаборатории, Ферми убедился, что вода прекрасно замедляет нейтроны. А он уже понял, что медленные нейтроны легче захватываются атомами просто потому, что они медленнее пролетают мимо ядер, то есть дольше соседствуют с ними. Он еще не знал тогда, что при захвате таких нейтронов становятся как бы вдвойне радиоактивными ядра урана. Не знал, что они делятся почти пополам, выпуская на волю огромную энергию внутриядерных связей. Он еще не догадывался, что в этих опытах у римского фонтана закладывает экспериментальную основу будущих атомных реакторов.

Но, согласитесь, у него были основания питать нежные чувства к нейтронам. И недаром призрачная пуля Паули получила из его уст трогательное имя «нейтрончик» — нейтрино.

А через четверть века, в 1956 году, нейтрино вдруг стало героем дня — с ним связались взбудоражившие ученых новые события в науке об элементарных частицах. Так разве не ясно, что физик в самом Деле имел право улыбнуться в ответ на наше недоумение: что может дать знание какого-то там импульса? Но был у него и еще один повод для улыбки — менее замысловатый, но не менее существенный.

6

Когда вам говорят — площадь комнаты такая-то, что можно сказать о ее длине и ее ширине? Ничего определенного: комната может быть квадратной, а может быть похожей на коридор. Вот так и импульс — произведение массы на скорость: его значение ничего не говорит о массе и скорости по отдельности.

Но, к счастью, есть еще одна легко измеримая величина, зависящая от скорости и массы частицы: энергия ее движения. Узнать бы еще энергию! Тогда сразу раскроет частица оба своих «секрета» — и массу и скорость. Природа ведь и вправду вовсе не держится за свои тайны, она готова разбазаривать их налево и направо, рассказывать когда угодно и кому угодно — нашелся бы умеющий слушать и понимать-Говоря о «секретах» частицы, мы признаемся, сами того не замечая, только в своей «глухоте» и «нерасторопности». Нужны два — уравнения, чтобы определить два неизвестных: скорость и массу. Величина импульса наполовину решает дело: она дает одно уравнение. Энергия может дать другое.

Надо услышать, что рассказывают про свою энергию со сцены туманной камеры космические частицы. Там они выступают перед исследователями как строители тоннелей из тумана. Кривизна тоннеля зависит от импульса. А массивность и длина? Очевидно, от затрат энергии, на какие способна частица, от ее энергетических ресурсов и от ее щедрости.

Около тридцати электроновольт нужно потратить частице на создание пары ионов в камере Вильсона. Частице приходится работать в пути, чтобы возникали центры туманообразования! Но когда силы ее иссякают, она останавливается, обрывается туманный след.

Заряженная частица работает своим электрическим полем. С его помощью взаимодействует она с электронами встречных атомов, отрывая их от ядер. Чем медленнее летит частица, тем больше возникает ионов, тем толще след. Но, стало быть, и траты ее больше — скорее иссякает богатство. А его и так было сравнительно немного: энергия медленной частицы невелика. Она сумеет выстроить хоть и массивный, но короткий тоннель. Это результат ее бедности и щедрости.

И вот частица быстрая миллиардерша, подобно протону из Дубны. Пролетая с огромной скоростью, успеет ли она вообще сколько-нибудь заметно поработать своим полем на единице пути? Успеет ли она потратить хоть немного своей громадной энергии на создание ионов? Тоннель, конечно, окажется очень длинным: энергии для трат у частицы сколько угодно — миллиарды электроновольт. Но не обрекает ли ее богатство на скупость? Не будет ли она. тратить из-за быстроты так мало, что тоннель выстроится кисейный, совсем прозрачный, еле различимый? Зачем тогда подставлять туманную камеру под космические лучи, где особенно интересны как раз частицы высоких энергий?


Еще от автора Даниил Семенович Данин
Нильс Бор

Эта книга — краткий очерк жизни и творчества Нильса Бора — великого датского физика-мыслителя, создателя квантовой теории атома и одного из основоположников механики микромира. Современная научная мысль обязана ему глубокими руководящими идеями и новым стилем научного мышления. Он явился вдохновителем и главой интернациональной школы физиков-теоретиков. Замечательной была общественная деятельность ученого-гуманиста — первого поборника международного контроля над использованием ядерной энергии, борца против политики «атомного шантажа»Книга основана на опубликованных ранее материалах, обнаруженных автором в Архиве Н. Бора и в Архиве источников и истории квантовой физики в Копенгагене.


Вероятностный мир

14 декабря 1900 года впервые прозвучало слово «квант». Макс Планк, произнесший его, проявил осторожность: это только рабочая гипотеза. Однако прошло не так много времени, и Эйнштейн с завидной смелостью заявил: квант — это реальность! Но становление квантовой механики не было спокойно триумфальным. Здесь как никогда прежде драма идей тесно сплеталась с драмой людей, создававших новую физику. Об этом и рассказывается в научно–художественной книге, написанной автором таких известных произведений о науке, как «Неизбежность странного мира», «Резерфорд», «Нильс Бор».


Резерфорд

Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).


Рекомендуем почитать
Священный Грааль и тайна деспозинов

Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.


Физик в гостях у политика

Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.


Ладога

"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.


Животные защищаются

Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.


Последний рейс "Лузитании"

В 1915 г. немецкая подводная лодка торпедировала один из.крупнейших для того времени лайнеров , в результате чего погибло 1198 человек. Об обстановке на борту лайнера, действиях капитана судна и командира подводной лодки, о людях, оказавшихся в трагической ситуации, рассказывает эта книга. Она продолжает ставшую традиционной для издательства серию книг об авариях и катастрофах кораблей и судов. Для всех, кто интересуется историей судостроения и флота.


Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.