Небесные сполохи и земные заботы - [21]

Шрифт
Интервал

Чем больше напряженность магнитного поля, которую характеризуют густотой силовых линий, тем больше должно образовываться «изломанных», пересоединенных линий. Поэтому чем больше величина южной составляющей магнитного поля в солнечном ветре, тем эффективнее, заметнее пересоединение, тем больше силовых линий становится хвостовыми, тем больше полярная шапка и тем дальше отъезжает авроральный овал от полюса, сползая в низкие широты.

Напрашивается вопрос: не было ли связано зарево, встревожившее Древний Рим, с таким расширением овала? Точный ответ дать нельзя. Авроральный овал был обнаружен лишь в 60‑х годах нашего столетия, и за время его наблюдений не случалось, чтобы он уходил в такие низкие широты. Но в средних и низких широтах бывают сияния другой природы, связанные с высыпанием в атмосферу частиц из внутренних, близких к Земле районов магнитосферы (из плазмосферы). Эти сияния крайне редки, поэтому они остаются плохо изученными по сравнению с сияниями аврорального овала, которые горят всегда.

Обратный вопрос: может ли авроральный овал так близко подойти к магнитному полюсу, что стянется в точку? Такого тоже никто не видел. По наблюдениям, он достигает некоторого предельного размера и меньше уже никогда не бывает. Впрочем, крайне сжатым овал бывает нечасто, и свойства магнитосферы при таком состоянии овала пока еще плохо выявлены.

Нет необходимости перечислять другие важные следствия из гипотезы Данжи, объясняющие реально наблюдаемые черты магнитосферы. Их много. Трудно даже назвать какую–либо космофизическую теорию, которая могла бы сравниться с этой гипотезой по количеству подтвердившихся выводов. Почему же все–таки ее продолжают называть гипотезой, концепцией, но не теорией?

Вернемся к тому месту, где мы впервые заговорили о пересоединении. Все ли там понятно? Пересоединение мы вообразили, но есть ли оно на самом деле? По сей день далеко не ясно, какой физический механизм может обеспечить достаточно быстрое пересоединение достаточно большого количества силовых линий, чтобы благодаря этому получился достаточно быстрый отток вещества из окрестности Х‑точки. Судить об этом можно, лишь зная числа, а числа остаются неизвестными.

От физической теории ждут описания явления не только с качественной, но и с количественной стороны. Физики проверяют себя числом. Даже очень грубое его определение полезно, хотя бы как взгляд на неизвестную картину через плохо подобранные очки: можно потерять детали, можно что–то перепутать, но все–таки исключается случай, что мы видим существенное там, где вообще ничего нет. Поэтому теории более частные, отрывочные, но дающие в итоге некоторую численную оценку, нередко рассматриваются как вполне конкурентоспособные по отношению к «широкоохватным», но качественным гипотезам вроде концепции Данжи. Хорошо это или плохо — другой вопрос, философский.

А что говорят наблюдения? Если интересоваться глобальными чертами магнитосферы, то, как мы уже видели. с их описанием концепция Данжи прекрасно справляется. Обратимся теперь к самой Х‑точке. Соответствует ли то, что там происходит, идее пересоединения?

Космические аппараты предоставили науке замечательную возможность вести измерения непосредственно в космосе. Приборы подробно информируют исследователя о состоянии той точки космического пространства, где находится корабль, в тот момент, когда он там находится. Это позволило выявить очертания магнитосферы, распределение электрического и магнитного поля в ней, общий характер движения заполняющих магнитосферу частиц. Но изучение изменений, происходящих в магнитосфере, — несравненно более трудная задача.

Представим себе, что человеку часто приходится пересекать в разных направлениях какой–нибудь лесок. Довольно скоро он станет представлять себе его очертания, несмотря на то что из–за деревьев, как известно, леса не видно. Но вот человеку, многократно пересекающему стадион во время репетиции массового выступления спортсменов на празднике, намного труднее понять, какие фигуры будет видеть на поле стадиона зритель, сидящий на трибуне. Даже если потом этот человек во время праздника все увидит своими глазами, ему трудно будет уловить, какие именно моменты перестроения участников он наблюдал, двигаясь среди них.

Недавно были проведены спутниковые наблюдения в области предполагаемой Х‑точки на дневной стороне магнитосферы. Оказалось, что состояние частиц плазмы в самой этой области не так уж сильно зависит от межпланетного магнитного поля. Означает ли это, что пересоединение не происходит вовсе и качественные выводы Данжи лишь случайно совпадают с опытом, или мы просто не улавливаем общую картину пересоединения, когда следим за поведением частиц вдоль траектории космического аппарата (этого «микроприбора» по отношению к глобальной картине ближнего космоса), — это покажет будущее. Острая полемика ведется и по поводу спутниковых наблюдений в области, где должна находиться ночная Х‑точка.

Итак, Данжи, не углубляясь в проблему воздействия потоков солнечного вещества на магнитосферу, предположил, что она решена, и пошел дальше. Это позволило ему блестяще объяснить строение околоземного пространства и изменения в нем. Он не распутал гордиев узел современной космофизики — явления в Х‑точке, он решительно разрубил его. Но проблема, которую Данжи обошел, настолько важна, что разобраться с Х‑точкой необходимо. Гордиев узел еще предстоит распутать.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.