Наука высокого напряжения. Фарадей. Электромагнитная индукция - [27]
Томсон, очень серьезно относившийся к теориям Фарадея, верил, что существуют силовые поля и их помехи перемещаются частично внутри кабеля и снаружи него. По мнению Томсона, проблема была простой: когда телеграфист нажимал на клавишу, поле начинало перемещаться по кабелю длиной 1000 км, но также оно перемещалось вокруг электрического изолятора и железной оплетки, теряясь в водах океана.
Прямым результатом открытия электромагнита Эрстедом, Ампером и Араго стал телеграф, позволивший людям быстро получать и отправлять сообщения. Патент на изобретение получил американский художник Сэмюэль Финли Морзе в 1832 году. Когда отправитель нажимал клавишу, он подключал электрический ток, перемещающийся по кабелю до получателя, у которого запускался маленький электромагнит.
Электромагнит при пропускании через него тока с щелчком притягивал к себе железный язычок. Если отправитель отпускал клавишу, электрический ток прерывался, язычок возвращался в обычное положение. Морзе разработал код на основе прерывистых щелчков язычка, так что стало возможным передать любую букву алфавита со скоростью 150 знаков в минуту при условии прохождения работником телеграфа специального обучения. Эрстед, Ампер и Aparo умерли раньше и не увидели работающего телеграфа, а Майкл Фарадей, хотя уже был болен, смог присутствовать при рождении телекоммуникаций.
В наземных линиях такой проблемы не возникало, потому что кабель проходил высоко на столбах (и не контактировал с проводником-землей). Кроме того, наземные кабели имели более толстый слой изолятора, а для океана изолятор был более тонким из-за экономии как по весу, так и по цене (материал изолятора назывался гуттаперчей, он был открыт в 1850-х годах, добывался из определенных видов деревьев в Индии и был похож на каучук). Также воздушные провода не имели железной оплетки, а в океане она использовалась для исключения повреждения кабеля и чтобы его не унесло течением. Однако железная оплетка рассеивала сигнал, поскольку железо не является надежным изолятором. Все эти факторы свидетельствовали о необходимости более сильного — в 20 раз — заряда для подводного кабеля по сравнению с наземным. По расчетам Томсона, выраженным в его законе квадратов, при десятикратном увеличении длины кабеля скорость сигнала сокращалась в 100 раз.
Существовало два варианта решения данной проблемы. Первый, предложенный Томсоном, предусматривал увеличение диаметра жилы проводника. Но Филд верил во второй вариант, он хотел подключить кабель к источнику высокого напряжения для увеличения сигнала, компенсируя, таким образом, потери рассеивания. Однако здесь имелась другая проблема: при работе с высоким напряжением кабель быстро портился.
Филд считал объяснение Томсона слишком непонятным и заключил контракт с Эдвардом Уайтхаусом (1816–1890), который не верил в смехотворные силовые поля. Чтобы убедить инвесторов, Уайтхаус должен был всячески скрывать перед публикой свои колебания и неуверенность. Была проведена работа и с учеными, поддерживающими Томсона, чтобы они не задавали лишних вопросов. На публичную конференцию пригласили уже пожилого Майкла Фарадея и подсунули ему фальшивые отчеты с экспериментальными данными, якобы подтверждающими ошибки в расчетах Томсона.
Умственные способности Фарадея к этому времени ослабли (вероятно, из-за длительного вдыхания паров ртути, растекшейся на полу его лаборатории), и он дал неоднозначную оценку, которую можно было понять как неполное согласие с гипотезой Томсона. Поддержка Фарадеем проекта, хоть и не безоговорочная, стала решающим фактором для инвесторов. Но Томсон догадался, что Фарадея обманули и вынудили дать такое заключение практически силой, ведь он знал истинное мнение ученого, полученное после осмотра кабелей с использованием гуттаперчи, о том, что на передачу сигналов негативно влияют проводник, окружающий его изолятор и морская вода.
Кабель был изготовлен, но проект провалился, как и предсказывал Томсон: сигналы так искажались, что после пересечения Атлантики их было невозможно расшифровать. Применение высокого напряжения для передачи сигнала изнашивало кабель, поэтому отправка сообщений требовала все больше времени. Из-за недостаточной изоляции энергия рассеивалась: если телеграфист отпускал клавишу между одним сигналом и следующим за ним немного быстрее, поле, установившееся на протяжении кабеля, рассеивалось до начала передачи следующего сигнала; если телеграфист нажимал клавиши слишком быстро, новое поле накладывалось на предыдущее, все еще находившееся вокруг меди, железа и воды. Неудивительно, что, согласно документам, чаще всего передавались сообщения: «Передавайте медленнее» или «Повторите».
Немецко-американский физик Вальтер Мориц Эльзассер (19041991) в 1939 году высказал предположение о том, что вращение Земли создает в ядре из расплавленного металла медленные вихри, текущие с запада на восток. Эти вихри вызывают электрический ток, также проходящий с запада на восток. То есть электрический ток, циркулирующий в ядре Земли, создает магнитные линии по такому же принципу, как катушка проводника Фарадея.
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.
В 1915 г. немецкая подводная лодка торпедировала один из.крупнейших для того времени лайнеров , в результате чего погибло 1198 человек. Об обстановке на борту лайнера, действиях капитана судна и командира подводной лодки, о людях, оказавшихся в трагической ситуации, рассказывает эта книга. Она продолжает ставшую традиционной для издательства серию книг об авариях и катастрофах кораблей и судов. Для всех, кто интересуется историей судостроения и флота.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.
Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.
Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.
Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.