А. Салам, С.Вайнберг и Ш. Глэшоу — лауреаты Нобелевской премии по физике 1979 года.
Утверждение может показаться странным: как можно исследовать то, что происходило десятки миллиардов лет назад? И тем не менее такие “машины времени” существуют — это современные мощные телескопы, позволяющие изучать объекты на самой границе видимой части Вселенной. Свет от них идет к нам 15–20 миллиардов лет, мы сегодня видим их такими, какими они были именно в ранней Вселенной.
Теория объединения электромагнитных, слабых и сильных взаимодействий предсказала, что в природе есть большое количество частиц, никогда не наблюдавшихся экспериментально. Это не удивительно, если учесть, какие невообразимые энергии нужны для их рождения во взаимодействиях привычных нам частиц. Другими словами, для наблюдений за их проявлениями опять необходимо обращать свой взор на раннюю Вселенную.
Некоторые такие частицы нельзя даже назвать частицами в привычном нам смысле слова. Это одномерные объекты с поперечным размером около 10>-37 см (значительно меньше атомного ядра — 10>-13 см) и длиной порядка диаметра нашей Вселенной — 40 миллиардов световых лет (10>28 см). Академик Я. Б. Зельдович, предсказавший существование таких объектов, дал им красивое название — космические струны, поскольку они действительно должны напоминать струны гитары.
Создать их в лаборатории невозможно: у всего человечества не хватит энергии. Другое дело — ранняя Вселенная, где условия для рождения космических струн возникли естественным путем.
Итак, струны во Вселенной могут быть. И отыскать их придется астрономам.
Башня аризонской обсерватории Кит-Пик растворилась в черноте мартовской ночи. Ее огромный купол медленно поворачивался — глаз телескопа искал две звездочки в созвездии Льва. Астроном из Принстона Э. Тернер предполагал, что это квазары, таинственные источники, излучающие в десятки раз больше энергии, чем самые мощные галактики. Они так бесконечно далеки, что едва видны в телескоп. Наблюдения закончились. Тернер ждал, когда ЭВМ расшифрует оптические спектры, даже не предполагая, что через несколько часов сделает сенсационное открытие…
Впрочем, рассказ об этой истории лучше начать с другой мартовской ночи, вернувшись на много лет назад.
В 1979 году астрофизики, изучая радиоисточник в созвездии Большой Медведицы, отождествили его с двумя слабыми звездочками. Расшифровав их оптические спектры, ученые поняли, что открыли еще одну пару неизвестных квазаров.
Вроде бы ничего особенного — искали один квазар, а нашли сразу два. Но астрономов насторожил необъяснимый факт: спектры у источников полностью совпали. Вот это-то и оказалось главным сюрпризом.
Дело в том, что спектр каждого квазара уникален и неповторим. Порой их даже сравнивают с дактилоскопическими картами — как нет одинаковых отпечатков пальцев у разных людей, так не могут и совпадать спектры двух квазаров. И если уж продолжить сравнение, то совпадение оптических спектров у новой пары звезд было просто фантастическим — словно сошлись не только отпечатки пальцев, но даже и мельчайшие царапинки на них.
Одни астрофизики сочли “близнецов” парой разных, не связанных квазаров. Другие выдвинули смелое предположение: квазар один, а его двойное изображение — просто “космический мираж”. О земных миражах, возникающих в пустынях и на морях, наслышан каждый, а вот наблюдать подобное в космосе еще никому не удавалось. Однако это редкое явление должно возникать.
Академик Я.Б. Зельдович — автор идеи космических струн
Космические объекты с большой массой создают вокруг себя сильное гравитационное поле, которое изгибает идущие от звезды лучи света. Если поле неоднородно, лучи изогнутся под разными углами, и вместо одного изображения наблюдатель увидит несколько. Понятно, что чем сильнее искривлен луч, тем больше и масса гравитационной линзы. Гипотеза нуждалась в проверке. Долго ждать не пришлось, линзу нашли осенью того же года. Эллиптическую галактику, вызывающую двойное изображение квазара, сфотографировали почти одновременно в двух обсерваториях. А вскоре астрофизики обнаружили еще четыре гравитационные линзы. Позднее удалось обнаружить даже эффект “микролинзирования” — отклонение световых лучей очень маленькими (по космическим меркам) темными объектами масштаба нашей Земли или планеты Юпитер.
И вот Э. Тернер, получив похожие друг на друга, как две капли воды, спектры, открывает шестую линзу. Казалось бы, событие заурядное, какая уж тут сенсация. Но на этот раз двойные лучи света образовали угол в 157 секунд дуги — в десятки раз больший, чем раньше. Такое отклонение могла создать лишь гравитационная линза с массой в тысячу раз большей, чем любая доселе известная во Вселенной. Вот почему астрофизики поначалу и предположили, что обнаружен космический объект невиданных размеров — что-то вроде сверхскопления галактик.
Эту работу по важности, пожалуй, можно сравнить с такими фундаментальными результатами, как обнаружение пульсаров, квазаров, установление сетчатой структуры Вселенной. “Линза” Тернера, безусловно, одно из выдающихся открытий второй половины XX века.