Наша математическая вселенная - [126]

Шрифт
Интервал


Рис. 12.3. FRAC, трёхмерный клон «Тетриса», реализует математическую структуру, где пространство и время дискретны, а не непрерывны.


Рис. 12.4. Компьютерная программа может автоматически генерировать упорядоченный список конечных математических структур, где каждая кодируется последовательностью цифр. В таблице показаны некоторые примеры, заданные при помощи схемы кодирования из моей статьи 2007 года. Слова и диаграммы во второй колонке — это избыточный «багаж», отражающий способы, какими люди называют и иллюстрируют эти структуры.


Или даже так: существует множество математических структур, где нет ни пространства, ни времени, а значит, не имеет и смысла говорить, будто в них что-то происходит. Большинство структур, примеры которых приведены на рис. 12.4, как раз такого типа. Скажем, внутри абстрактного додекаэдра ничего не происходит, поскольку эта математическая структура не содержит времени.


Наш «почтовый индекс» в мультиверсе IV уровня

Как отмечалось в гл. 10, математическая структура — это множество абстрактных элементов с отношениями между ними. Для более систематического изучения мультиверса IV уровня нам понадобится написать компьютерную программу, которая автоматически генерирует список существующих математических структур, начиная с простейших. На рис. 12.4 показаны десять строк этого списка, составленного с помощью схемы кодирования, которую я описал в статье 2007 года о математической Вселенной.[84] Детали этого метода здесь несущественны, кроме того замечательного свойства, что любая математическая структура с конечным числом элементов обязательно появится в этом списке. А значит, любую из этих математических структур можно задать одним числом — её номером в списке.

Для конечных математических структур все отношения можно описать конечными таблицами чисел, распространяющими идею таблицы умножения на другие типы отношений. Для структур с очень большим числом элементов эти таблицы становятся огромными и кодируются длинными числами, что смещает их вниз по списку. Однако для небольшой доли очень больших структур характерна внутренняя элегантная простота, что сильно упрощает их описание. Рассмотрим математическую структуру, элементами которой являются целые числа: 0, 1, 2, 3, …, и отношения сложения и умножения. Было бы напрасной тратой сил выписывать для задания умножения колоссальную таблицу умножения для всех пар чисел: даже если ограничиться первым миллионом чисел, таблица с миллионом строк и миллионом столбцов содержит триллион клеток. Вместо этого мы учим детей лишь таблице умножения первых десяти чисел, а также простому алгоритму, как использовать эту таблицу для умножения многозначных чисел. Для компьютеров мы описываем умножение ещё эффективнее, чем для детей: когда все числа представлены в двоичной системе счисления, нужно задать таблицу умножения размером всего 2 × 2 для нулей и единиц и добавить короткую компьютерную программу, которая указывает, как пользоваться таблицей для перемножения сколь угодно больших чисел.

Программа хранится просто как конечная строка нулей и единиц (битовая строка), которую можно интерпретировать как целое число, записанное в двоичной системе. Это даёт альтернативный способ кодирования и нумерации математических структур на рис. 12.4: пусть каждая математическая структура представляется числом, битовая строка которого является кратчайшей компьютерной программой, и её функции определяют все отношения в данной структуре. Теперь структуры будут появляться вверху списка, если их просто описать, даже если они огромны по числу своих элементов. Пионеры теории сложности Рэй Соломонофф, Андрей Колмогоров и Грегори Хайтин определили алгоритмическую сложность (для краткости — сложность) битовой строки как длину компьютерной программы, которая выдаёт эту строку. Это означает, что альтернативный основной список перечисляет математические структуры в порядке возрастания сложности.

Замечательная особенность этого нового списка состоит в том, что он также может содержать математические структуры с бесконечным числом элементов. Так, для определения математической структуры из всех целых чисел с операциями сложения и умножения понадобится просто задать кратчайшую программу, которая способна считывать сколь угодно длинные числа, складывать и перемножать их. Такие алгоритмы есть в системе Mathematica и других программных пакетах компьютерной алгебры. Математические структуры, включающие бесконечное множество точек, образующее континуум, подобно пространству-времени, электромагнитным полям и волновым функциям, нередко можно хорошо аппроксимировать конечными структурами, пригодными для компьютерной обработки. Именно так я с коллегами и выполняю большую долю расчётов в области теоретической физики.

Короче говоря, мультиверс IV уровня можно систематически отобразить путём перечисления математических структур с помощью компьютера и изучения их свойств. Если однажды нам удастся определить, в какой математической структуре мы живём, можно будет сослаться на неё по номеру в основном списке, и мы получим возможность записать свой адрес в полной физической реальности (


Еще от автора Макс Тегмарк
Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта

“Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта” – увлекательная научно-популярная книга, вторая книга Макса Тегмарка, физика и космолога, профессора Массачусетского технологического института. В ней он рассматривает возможные сценарии развития событий в случае появления на Земле сверхразумного искусственного интеллекта, анализирует все плюсы и минусы и призывает специалистов объединить свои усилия в борьбе за кибербезопасность и “дружественный” искусственный интеллект.


Наша математическая вселенная. В поисках фундаментальной природы реальности

Галилео Галилей заметил, что Вселенная – это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведет за собой через бесконечное пространство и время – от микрокосма субатомных частиц к макрокосму Вселенной.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.