Наш коллега - робот - [34]

Шрифт
Интервал

В начале нашего века зоопсихолог Э. Торндайк провел следующий эксперимент с животными. Имелся Т-образный лабиринт с тремя площадками. На площадку, находившуюся в основании буквы Т, помещалось подопытное животное, а на две другие площадки, находившиеся у концов горизонтальной перекладины буквы Т, помещалась приманка. Животное могло делать альтернативный выбор: добежав до развилки, оно могло повернуть к левой площадке или к правой площадке.

Но по пути к приманке его ожидала неприятность.

В стенки коридора были вмонтированы электроды.

С некоторой фиксированной вероятностью на них подавалось напряжение, и тогда пробегавшее мимо них животное получало болевое раздражение - среда выдавала сигнал наказания. Сигналом же поощрения среды была та пища, которая ожидала животное на конечной площадке. Если в эксперименте вероятность раздражения в одном из коридоров (например, в левом) намного превосходила вероятность такого раздражения в другом коридоре (в правом), то естественно было бы считать, что животное адаптируется к условиям среды: после серии пробежек оно будет предпочитать поворачивать в правый коридор, а не в левый. Больше всего Э. Торндайк экспериментировал с крысами. Оказалось, что они быстрее оценивают более безопасный путь и уверенно выбирают его даже при небольшой разнице наказаний.

Другие подопытные животные делали это с разной степенью адаптивности, но способность эта оказалась присущей всем видам животных, участвующих в экспериментах.

Проблема управления интеллектуальным роботом заключается, таким образом, в моделировании способности животного и человека к адаптации.

Иерархическая организация управления роботами - это прежде всего распределение функций восприятия, обработки информации и управления между отдельными уровнями иерархии и подсистемами роботов. Полностью централизованные алгоритмы обработки информации и управления при больших объемах обработки, свойственных роботам третьего поколения, оказываются малоэффективными или даже непригодными. Таким образом, возникновение иерархической адаптивной структуры диктуется в первую очередь стремлением повысить качество управления роботом, то есть уменьшить уровень неопределенности и увеличить быстродействие.

Для функционирования отдельных уровней и подсистем необходим значительно меньший объем информации.

Так возникает распараллеливание алгоритмов, что и позволяет решить задачу в условиях существенно меньшей неопределенности.

Итак, для активной жизни роботов третьего поколения жизненно необходимы "хорошие мозги", ибо именно от степени интеллектуальности робота зависит принадлежность его к тому или иному поколению. Существует даже весьма обоснованная классификация роботов в зависимости от функций его электронного мозга.

Управляемые роботы. Роботы "нулевого поколения" - управляемые человеком манипуляторы - не обладают, естественно, никакими свойствами интеллектуальности - все заключено в операторе.

Обучаемые роботы. Роботы первого поколения имеют память. План и порядок действий задает человек - оператор, а робот всего лишь запоминает (способность обучаться) и воспроизводит.

Очувствленные роботы. План действий задает человек, а робот, запомнив план, вычисляет конкретный порядок действий в зависимости от тех или иных данных внешней среды (обратная связь).

Интеллектуальные роботы. Человек задает лишь цель, а робот сам составляет план операции, определяет порядок действий с учетом реальных условий и превращает действия в движения исполнительных механизмов. Для этого роботу необходимо иметь не только широкую систему чувств, не только интеллект, но и модель окружающей действительности и даже модель самого себя (сознание и самосознание робота).

КАК РОБОТЫ НАБИРАЛИСЬ УМА

"Представление о том, что компьютеры делают только то, что им диктуют люди, обманчиво. Если вы не можете сказать компьютеру, как сделать что-то самым лучшим образом, то вы оОязываете его испробовать множество подходов. И если кто-то потом будет говорить, что машина действовала так, как ей было сказано, в этом будут содержаться двусмысленности. Ведь вы не устанавливали и не могли знать, какой из подходов изберет машина", указывает М. Минский, специалист в области искусственного интеллекта.

Обычные вычислительные машины, которые обрабатывают счета за электричество или производят банковские операции, - это всего лишь счетные устройства: быстродействующие, но абсолютно неразумные. Вся их программа содержит лишь список команд, которые они безошибочно выполняют.

В некоторых научно-исследовательских центрах уже имеются другие вычислительные машины, внешне очень похожие на прежние, но в них заложены более сложные программы. Ученые начиняют машину информацией и учат ее "мыслить". Такие машины, наделенные "разумом", постепенно смогут имитировать многие наши способности, а в некоторых случаях даже превзойти их. В скором времени, возможно, это будут роботы, которые начнут рассуждать, понимать, приобретут способность учиться, а после этого попытаются изменить наши представления о жизни и даже о сам-их себе.

Исследователи во всем мире занимаются этой проблемой вот уже в течение 25 лет. Во время второй мировой войны английский математик А. Тьюринг изобрел машину - прародительницу современных вычислительных машин. Это была система, способная расшифровывать вражеские сообщения. Всю свою жизнь изобретатель затем мечтал о создании такой машины, которая была бы способна учиться и стать разумной.


Рекомендуем почитать
Во власти цифр. Как числа управляют нашей жизнью и вводят в заблуждение

Миром правят числа. Все чаще и чаще решения принимают не люди, а математические модели. В числах измеряется все – от наших успехов в образовании и работе и состояния нашего здоровья до состояния экономики и достижений политики. Но числа не так объективны, как может показаться. Кроме того, мы охотнее верим числам, подтверждающим наше мнение, и легко отбрасываем те результаты, которые идут вразрез с нашими убеждениями… Анализируя примеры обращения с численными данными в сферах здравоохранения, политики, социологии, в научных исследованиях, в коммерции и в других областях и проливая свет на ряд распространенных заблуждений, нидерландский журналист, специалист по числовой грамотности Санне Блау призывает мыслить критически и советует нам быть осмотрительнее, о чем бы ни шла речь – о повседневных цифрах, управляющих нашим благополучием, или о статистике, позволяющей тем, кто ее применяет, достичь огромной власти и влияния. «Числа влияют на то, что мы пьем, что едим, где работаем, сколько зарабатываем, где живем, с кем вступаем в брак, за кого голосуем, как решаем вопрос, брать ли ипотеку, как оплачиваем страховку.


Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


О науке без звериной серьёзности

О чем это? • о ключевых словах современной науки; • о самых страшных экспериментах; • о сущности цивилизации. «Любому человеку нужен просто разговор – о важном, научном. Это задача научных журналистов. И один из самых ярких, самых ясных, самых ответственных – Григорий Тарасевич». Александр Архангельский, телеведущий, писатель, профессор Высшей школы экономики «…Книга вызывает множество противоречивых чувств: с рядом моментов хочется спорить, от большинства историй смеялась в голос, а от некоторых глав становилось безумно грустно».


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.