Нанонауки. Невидимая революция - [27]

Шрифт
Интервал

Подключив таким образом молекулу, мы замерили ее электрическое сопротивление. Это «электрическое сопротивление» не имело отношения к электродам, то есть поверхности кристалла и игле, но существовало внутри молекулы. Годом спустя Дон Эйглер таким же образом замерил электрическое сопротивление самого тонкого проводка в мире — проводника из двух атомов ксенона. Так начинались эксперименты с электрическими свойствами считаных атомов или одной-единственной молекулы.

МЕХАНИКА МОЛЕКУЛЫ

Теперь вспомним о первых механических опытах с одиночной молекулой. Мы уже рассказывали про иглу туннельного микроскопа, толкавшую одну молекулу. В 1998 году началась — и совершенно случайно! — эра «наномеханики». Но для начала лучше вспомнить о том, что случилось немножко раньше.

На исходе 1960-х годов американский биохимик Пол Бойер предположил, что белковые молекулы могут менять форму — из-за вращения какой-то из их частей. Иначе говоря, «в мире внизу» макромолекула способна вывернуться наизнанку. Нельзя ли как-то приспособить это явление к механике? В 1997 году японец Кадзухико Киносита с сотрудниками смогли увидеть это вращение на экране, сумев прикрепить флуоресцирующий маркер к поворачивающейся части молекулы белка. Предположение Бойера и наблюдение Киноситы макромолекул, состоящих из тысяч атомов, подсказали вопрос: а нельзя ли пронаблюдать подобные же вращательные движения у одиночной маленькой молекулы?

В это самое время мы с Джимом Гимжевски изучали, как сравнительно плоские молекулы декациклена собираются в «кучки» на поверхности кристалла меди. Молекула декациклена состоит из центрального бензольного ядра (это такой плоский шестиугольник), к которому прицеплено шесть «лапок». Мы собирались начать исследования с дальнейшего изучения условий, связанных с получением и формированием изображения одиночной молекулы, чтобы выяснить, как оно зависит от расстояния от иглы микроскопа до тела молекулы, лежащей на некоторой поверхности. Ножки декациклена много короче лапок нашей первой молекулы — порфирина. В своем опыте мы старательно испаряли молекулы с поверхности, чтобы оставить только плотный тонкий слой из упорядоченно расположенных молекул. Но молекулы отказывались становиться в четкий строй: то здесь, то там замечались изъяны. В одном месте, например, молекулы не было, а в другом она хоть и была, но сильно выбивалась из строя. И пробелы в молекулярных рядах порой еще и сливались в большие пятна, сравнимые по величине с размером одиночной молекулы. А что будет с молекулой в этом самом слое, если она окажется на краю такой «щели» или, точнее, «ямы»? Наверное, она иногда будет смещаться — словно бы напрашиваясь на исследование.

Удача нам улыбнулась: обследовав несколько таких пробелов, мы заметили одну молекулу, сильно отошедшую от первоначального положения, — по сравнению с другими молекулами это бросалось в глаза. И она поворачивалась — как малюсенькая юла диаметром 1,2 нм. Для вращения нужна энергия — скорее всего, хватало тепловой энергии поверхности, температура которой равнялась комнатной. В этом опыте мы впервые получили изображение вращения одиночной молекулы. Восторг скоро прошел, и мы принялись терпеливо выяснять параметры вращения и определять факторы, влияющие на этот процесс.

После нескольких недель экспериментов Джим Гимжевски и его товарищ Рето Шлиттлер показали, что можно по своей воле и раскручивать молекулу, и останавливать ее вращение, — манипулируя иглой микроскопа, конечно. И мы даже подобрали объяснение физики этого явления. В сущности, такая молекула-колесико ведет себя как шестеренка в коробке передач. Если молекула — на самом краю щели (или ямы), то четыре из ее шести лапок сцеплены с такими же лапками соседних молекул, и наша молекула крутиться не станет. Но, если ее подтолкнуть, сдвинув на 0,25 нм, то она окажется посередине щели, и соседок у нее не останется. Значит, четыре прежде занятые лапки теперь освободятся и она повернется сама — надо только, чтобы было куда повернуться. Но если слишком просторно, на вращение может наложиться процесс боковой диффузии — и он, скорее всего, затормозит молекулу.

Чтобы разобраться в режиме вращения такой молекулы, мы регистрировали вариации туннельного тока, устанавливая иглу в том месте, через которое проходит одна из лапок вращающейся молекулы. И мы заметили, что импульсы тока, отображаемые на экране осциллографа, пляшут в том же ритме, в котором крутится наша молекула. К несчастью, при комнатной температуре она очень уж разгонялась, и толком разобрать, что с нею творится, было почти невозможно. Вместе с коллегами из Берлинского университета мы синтезировали другую молекулу, на этот раз с шестью длинными зубчиками, — получилась настоящая молекула-шестеренка величиной в 1,2 нм. Пометив химически один зуб шестерни и слегка изменив ее строение, мы стали наблюдать за вращением молекулы: она поворачивалась рывками, шаг за шагом, всякий раз описывая дугу в 60° и продвигаясь вдоль своего рода кремальеры — длинной рейки с зубчиками, тоже состоящей из молекул, только других.

В 2001 году мы с Франческой Мореско и Герхардом Мейером повторили эксперимент с фталоцианином — молекулой с четырьмя лапками, которая, если ее подталкивали иглой, смещалась — и фиксировали в режиме реального времени колебания тока в цепи между иглой и поверхностью. Теперь на экране осциллографа размах колебаний был больше. Мы легко определили период этих колебаний — он оказался равен 0,25 нм, а означало это то, что молекула передвигается по медной поверхности от площадки к площадке. Большое колебание не было сплошным: внутри большого импульса заметны были флуктуации меньшей амплитуды. Эти меньшие колебания удалось увязать с попеременным движением «передних» лапок — тех, что были направлены в сторону перемещения молекулы («задние» лапки удерживала игла)! Если молекулу толкнуть, она сдвигается на манер насекомого, ползущего по гладкой поверхности: сначала деформируется одна из ее передних лапок, потом — вторая. Эти деформации слегка искажают электронную структуру молекулы, а потому ток, текущий в цепи, образованной поверхностью, молекулой и иглой, меняется в том же ритме, в котором молекула «перебирает передними лапками». Чтобы занять соседнюю площадку, молекула сначала вытягивает одну лапку, потом тянет за ней другую, а не деформирует обе передние лапки сразу — иначе говоря, молекула как бы ходит.


Рекомендуем почитать
Священный Грааль и тайна деспозинов

Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.


Физик в гостях у политика

Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.


Ладога

"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.


Животные защищаются

Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.


Последний рейс "Лузитании"

В 1915 г. немецкая подводная лодка торпедировала один из.крупнейших для того времени лайнеров , в результате чего погибло 1198 человек. Об обстановке на борту лайнера, действиях капитана судна и командира подводной лодки, о людях, оказавшихся в трагической ситуации, рассказывает эта книга. Она продолжает ставшую традиционной для издательства серию книг об авариях и катастрофах кораблей и судов. Для всех, кто интересуется историей судостроения и флота.


Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.


Империя звезд, или Белые карлики и черные дыры

Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.


Десять величайших открытий в истории медицины

В истории медицины были открытия, без которых она никогда не стала бы современной наукой, способной порой творить настоящие чудеса и вылечивать даже самые тяжелые болезни. Именно о таких открытиях и рассказывают известные американские врачи кардиолог Мейер Фридман и радиолог Джеральд Фридланд. Повествуя о выдающихся ученых, об их жизни и об их времени, об их предшественниках и последователях. авторы создают яркие образы великого анатома Везалия, открывателя мира бактерий Левенгука, борцов с инфекционными болезнями Пастера и Коха.


Эврики и эйфории. Об ученых и их открытиях

Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.


Мозг онлайн. Человек в эпоху Интернета

Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…