На кого упало яблоко - [3]

Шрифт
Интервал

Конечно, такие лаборатории не служили целям обучения экспериментальному искусству, а могли лишь использоваться исследователями-одиночками. Упомянутые ученые, а также и такие, как Максвелл или Кельвин, не проходили какого-либо курса обучения практической физике. Его просто еще не было. В тогдашних университетах преподавание велось в классическом духе, основное внимание уделялось гуманитарным и математическим наукам, физике отводилось мало места.

Положение изменилось к середине XIX столетия, когда бурное развитие промышленности, машиностроения, химической промышленности, металлургии и горного дела, электротехники, теплотехники, строительство железных дорог, возникновение пароходства и воздухоплавания стимулировали развитие науки, новых форм ее организации. Все более усиливалась связь науки и техники. К этому времени значительно усложнилась физическая теория. Новые задачи, стоявшие перед физической наукой, требовали для своего решения все большего числа физиков. И с сороковых годов XIX столетия начинают создаваться физические лаборатории как новая форма организации коллективных методов исследования в физике. Первая физическая лаборатория была создана в Геттингенском университете В. Вебером. Вебер привлек студентов к подготовке лекционных опытов. Наиболее способным он предложил небольшие физические исследования. Позднее он ввел практические занятия для желающих. В лаборатории Вебера работали ученые из различных стран мира, в том числе и из России.

В новом Страсбургском университете, основанном в 1872 году, уже заранее было предусмотрено строительство физического института. Его директор, немецкий физик Кундт, создал очень удобный для обучения и исследования институт, который долго служил прототипом для многих институтов, аудиторий, лабораторий различных стран. Здесь под руководством Кундта была подготовлена плеяда тонких экспериментаторов, таких, как Рентген, Лебедев, Пашен, Рубенс, Винер, Голицын и др. Вслед за Страсбургским институтом в 1875 году создаются физические институты в Лейпциге, Мюнхене, Бонне, Бреслау, Фрайбурге и других городах. Вскоре каждый немецкий университет обзавелся хорошо оборудованной физической лабораторией. Создание лабораторий повлекло за собой развитие старых и основание новых мастерских физических приборов.

В 1846 году 22-летний Томсон занял пост профессора натурфилософии в университете Глазго. До 1870 года лабораторией Томсону и его студентам служили старые лекционные комнаты и заброшенный винный подвал, а после переезда университета в новое здание в 1870 году Томсону были предоставлены просторные помещения для экспериментальной работы.

В Оксфорде в 1867 году в небольшой комнате, выделенной университетом, профессор Клифтон начал обучение экспериментальной физике. В 1872 году вступила в строй спланированная Клифтоном Кларендонская лаборатория. Она послужила прототипом для многих лабораторий мира. Д. К. Максвелл посетил ее, когда планировал Кавендишскую лабораторию в Кембридже. В Кембридже обучение экспериментальному искусству начало проводиться с 1874 года в здании знаменитой Кавендишской лаборатории. Каведишская лаборатория была выстроена на частные средства и сыграла огромную роль в развитии физики. В 1868 году профессор Жамен открыл лабораторию в Сорбонне. Под руководством Жамена в лаборатории работало несколько русских и румынских физиков.

Экономическая отсталость России сказалась и на отставании ее в деле создания физических лабораторий. Для русских физиков местом деятельности служили физические кабинеты. Здесь хранилась аппаратура, которую применяли на лекционных демонстрациях, и проводились единичные экспериментальные исследования. Но и в таких условиях был выполнен ряд замечательных работ такими физиками, как А. Г. Столетов или П. Н. Лебедев, обогатившими классическую физику>[5].

После промышленной революции наука из способа удовлетворения любопытства и источника знаний для системы образования постепенно превратилась в один из источников новых технологий и извлечения доходов, связанных с их применением. В этот период среди видных ученых еще было много любителей, но со временем все большее их число превратилось в профессионалов, то есть людей, для которых занятие наукой стало профессией, способом извлечения дохода для личных и профессиональных нужд. И хотя в начале двадцатого века еще были ученые-теоретики, такие, как Альберт Эйнштейн, которые еще могли работать в одиночку, или такие, как Мария Кюри и Эрнест Резерфорд, которые обходились немногочисленными помощниками, в дальнейшем в науке возобладал коллективный способ исследования. Такие проекты, как, например, создание атомной бомбы, требовали участия тысяч людей, организации сложной системы их взаимодействия и разветвленной иерархической структуры. И физики переходят на качественно новый характер работы, изменяются взаимоотношения ученых. Но об этом дальше.


Современная наука развивается по разумному плану, поэтому многие открытия можно предвидеть. Многие, но не все. Существовали и существуют открытия непредугаданные, неожиданные. История показывает, что некоторые научные открытия, в том числе те, которые перевернули мир, были сделаны совершенно случайно. Достаточно вспомнить Архимеда, который, опустившись в ванну, открыл закон, впоследствии названный его именем, или Ньютона, на которого упало знаменитое яблоко. К этому можно добавить открытие рентгеновских лучей, радиоактивности… Именно чистой случайностью объясняют некоторые исследователи все творческие удачи и открытия. «Всякая новая идея есть дар случая», — писал Гельвеций. Действительно, иногда везение способно сыграть не меньшую роль, чем знания или гениальное озарение. Быть может, кое-что здесь является преувеличением, однако есть вполне конкретные примеры, показывающие, что и в науке многое зависит от случая.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Виролюция

Основная идея этой книги шокирует. Все живое на планете, в том числе люди, живут в симбиозе с вирусами, эволюционируют вместе с ними и благодаря им… выживают. Первая реакция читателя: этого не может быть! Но, оказывается, может… Вирусы, их производные и тесно связанные с ними структуры составляют как минимум сорок три процента человеческого генома, что заставляет сделать вывод: естественный отбор у человека и его предков происходил в партнерстве с сотнями вирусов. Но как вирусы встроились в человеческий геном? Как естественный отбор работает на уровне вирус-носитель? Как взаимодействуют движущие силы эволюции — мутации, симбиогенез, гибридизация и эпигенетика? Об этом — логичный, обоснованный научно и подкрепленный экспериментальными данными рассказ Фрэнка Райана.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Удивительные истории о существах самых разных

На нашей планете проживает огромное количество видов животных, растений, грибов и бактерий — настолько огромное, что наука до сих пор не сумела их всех подсчитать. И, наверное, долго еще будет подсчитывать. Каждый год биологи обнаруживают то новую обезьяну, то неизвестную ранее пальму, то какой-нибудь микроскопический гриб. Плюс ко всему, множество людей верят, что на планете обитают и ящеры, и огромные мохнатые приматы, и даже драконы. О самых невероятных тайнах живых существ и организмов — тайнах не только реальных, но и придуманных — и рассказывает эта книга.Петр Образцов — писатель, научный журналист, автор многих научно-популярных книг.


Чудесная жизнь клеток: как мы живем и почему мы умираем

Что мы знаем о жизни клеток, из которых состоим? Скорее мало, чем много. Льюис Уолперт восполнил этот пробел, рассказав о клетках доступным языком, — и получилась не просто книга, а руководство для понимания жизни человеческого тела. Как клетки зарождаются, размножаются, растут и приходят в упадок? Как они обороняются от бактерий и вирусов и как умирают? Как злокачественные клетки образуют опухоли? Какую роль во всем этом играют белки и как структуру белков кодируют ДНК? Как воспроизводятся стволовые клетки? Как, наконец, из одной-единственной клетки развивается человек? И главный вопрос, на который пока нет однозначного ответа, но зато есть гипотезы: как появилась первая клетка — и значит, как возникла жизнь? Мир клеток, о котором рассказывается в этой книге, невероятен.Льюис Уолперт (р.


Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки.