Мозг и тело. Как ощущения влияют на наши чувства и эмоции - [22]
Дискретные множества, такие как рукопожатия или, например, стаи животных, состоят только из целых чисел – в отличие от воды или высоты деревьев, которые можно измерить в числах с дробями. Ученикам поначалу бывает сложно разобраться в этих «тонкостях». Но занявшись таким нехитрым делом, как обмен рукопожатиями в танце, они на самом деле решают задачу из области дискретной математики, а точнее – из комбинаторики, раздела математики, изучающего дискретные объекты и множества и их сочетания. Физические ощущения помогают ученикам понять абстрактные математические термины – в данном случае смысл выражения «дискретное множество».
Разобравшись с термином «сочетание объектов» и с тем, как проверяются все возможные комбинации, школьники тем самым осваивают сложное математическое понятие, с которым будут сталкиваться до конца своего обучения в колледже. Рассмотрим следующие алгебраические задачи для средней школы:
У Джона есть две рубашки и три пары брюк. Сколько у него есть возможных комплектов одежды?
Ответ: 2 × 3 = 6 возможных комплектов (поскольку Джон не нудист и всегда надевает и рубашку, и брюки).
У Салли в автомобиле есть CD-проигрыватель на шесть дисков. Всего у нее 100 дисков. Сколько возможных комбинаций загрузки плеера она может составить?
Ответ: при загрузке первого диска она может выбирать из 100 CD; для второго – из 99, для третьего – из 98; для четвертого – из 97; для пятого – из 96; для шестого – из 95. Итак: 100 × 99 × 98 × 97 × 96 × 95 = 858 277 728 000 (если Салли не передумает и продолжит заряжать по шесть дисков за раз).
Ученики, имевшие возможность физически «прочувствовать», что означает понятие «дискретное множество», оказываются лучше подготовленными к встрече с этими задачами. Им проще связать их с собственным опытом и примерить на себя различные возможные комбинации, чтобы определить, насколько правильно выведенное ими алгебраическое уравнение. Подобно третьеклассникам из эксперимента Гленберга, которые отсчитывали определенное количество рыбок для каждого животного из задачи про зоопарк, ученики средних классов, поняв, что такое «дискретный» и что количество возможных комбинаций ограничено, сумеют привязать значение абстрактных понятий из алгебры к чему-то конкретному.
В другом упражнении из «Математического танца» ученики встают попарно и десять раз подбрасывают вверх монетку. От того, что выпадет – орел или решка, зависит, кто из пары будет выполнять движение. Но прежде чем начать подбрасывать монетку, они составляют прогноз, кому сколько раз придется двигаться. До начала упражнения большинство учеников предполагают, что каждый из них будет делать свое движение примерно столько же раз, сколько и напарник. Но вскоре они понимают, что в реальности все обстоит несколько иначе. Что пятидесятипроцентная вероятность выпадения орла или решки не означает, что все получится именно так, по крайней мере, до тех пор, пока ты не сделаешь несколько тысяч итераций, то есть повторов. Дети убеждаются: чем больше раз они будут подбрасывать монетку, тем ближе к 50 процентам будут подбираться, а это ключевой момент для понимания теории вероятности.
И наверное, самое удивительное в «Математическом танце» то, что само по себе движение имеет большое значение. Танцевать и одновременно подбрасывать монетку – важное условие урока на тему закона вероятности, который преподносят Шеффер и Стерн, потому что в процессе движения мы, как правило, запоминаем идеи и концепции лучше, чем когда стоим на месте.
Люди, занимающиеся танцем, давно заметили, что тело – надежный помощник памяти. Когда артисты балета разучивают новый хореографический этюд, они физически проигрывают движения в заданной последовательности, чтобы лучше запомнить шаги. И когда их просят воспроизвести разученное, они, как правило, склонны восстанавливать в памяти танцевальные движения порциями, на основе определенной последовательности положений, которые занимает тело. Они используют свое тело как запоминающее устройство, помогающее им организовывать свои шаги, а впоследствии и воспроизводить их. Точно так же и движения, связанные с математическими понятиями, помогают ученикам «проиграть» ту или иную задачу, «прочувствовать», как отдельные понятия связаны между собой, в результате чего им бывает легче загрузить их в свою память.
Но не только танцоры понимают связь между телом и разумом – она очевидна для всех, у кого физическое движение составляет часть профессии. Все выдающиеся спортсмены – от фигуристов и гимнастов до прыгунов в воду – знают, что изумительные фигуры, которые они демонстрируют, основываются на принципах математики и физики. Возьмем, к примеру, британского прыгуна в воду Томаса Дейли. Он покорил мировую сцену прыжков в воду своим ошеломительным выступлением на Играх содружества в Дели в 2010 году, на которых завоевал две золотые медали, а также мальчишеским задором, обаянием и привлекательной внешностью. Ожидалось, что на Олимпийских играх в Лондоне он повторит свой успех. Однако существовал и значительный риск, что к тому моменту он сильно вырастет – ведь Тому было всего 16 лет. «Мой рост – 1,72 метра. Если я вырасту еще на 5 сантиметров, могут начаться проблемы, – сообщил он журналисту BBC после своего блестящего выступления в Индии. – Когда ты слишком высокий, то крутишься медленнее и просто не успеваешь сделать все вращения до погружения в воду. Остается только пальцы скрестить и надеяться, что я не вытянусь так уж сильно»
Почему лучшие студенты допускают ошибки в простых тестах? Почему вы провалили собеседование, к которому так долго готовились? Почему мы теряемся именно тогда, когда нужно показать все, на что мы способны? Это случается со всеми. Вы готовитесь неделями и месяцами (а то и годами) к своему «большому дню» — в спорте, бизнесе или науке — но, когда этот день наступает, все идет наперекосяк. Вы берете не ту распечатку, путаетесь в простых вопросах, поскальзываетесь и не попадаете по мячу — иначе говоря, теряетесь в самый важный момент.
Наполеон притягивает и отталкивает, завораживает и вызывает неприятие, но никого не оставляет равнодушным. В 2019 году исполнилось 250 лет со дня рождения Наполеона Бонапарта, и его имя, уже при жизни превратившееся в легенду, стало не просто мифом, но национальным, точнее, интернациональным брендом, фирменным знаком. В свое время знаменитый писатель и поэт Виктор Гюго, отец которого был наполеоновским генералом, писал, что французы продолжают то показывать, то прятать Наполеона, не в силах прийти к окончательному мнению, и эти слова не потеряли своей актуальности и сегодня.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.