Мир по Эйнштейну. От теории относительности до теории струн - [51]

Шрифт
Интервал

излучения заданной частоты, содержащегося в заданном объеме V. Напомним, что энтропией физической системы называется определенная мера беспорядка, которая отражает факт нашего, вообще говоря, неполного знания об этой системе.

Чтобы разъяснить понятие энтропии и ее связь с идеей беспорядка, приведем один пример. Рассмотрим шахматную доску или квадрат восемь на восемь, содержащий, таким образом, 64 клетки. В начальный момент времени разместим определенное количество блох на одной из клеток этой шахматной доски и позволим блохам передвигаться свободно, т. е. прыгать в любых направлениях. Будем исходить из того, что края шахматной доски достаточно высоки и не позволяют блохам выпрыгнуть наружу. Спустя некоторое время, в течение которого блохи прыгали повсюду, они распределятся почти равномерно по всем клеткам шахматной доски. Это конечное состояние, очевидно, менее упорядоченное, нежели исходное состояние, в котором, как мы знаем, все блохи были собраны на одной клетке. Можно пойти дальше и количественно оценить увеличение беспорядка между начальным и конечным состояниями, для этого необходимо подсчитать число возможных конфигураций «системы блох». В конечном состоянии каждая блоха может находится с равной вероятностью на любой из 64 клеток шахматной доски. Таким образом, число возможных (равновероятных) состояний для одной блохи равно 64. Если у нас есть две блохи (предполагаемые независимыми и различимыми), то число возможных конфигураций для такой системы из двух блох равно 64 × 64, т. е. 64². Для трех блох мы получим 64³, и в общем случае можно заключить, что число возможных (равновероятных) конфигураций для системы из n блох будет равно 64>n. Заметим, поскольку в начальном состоянии все блохи находились на одной определенной клетке, то в этом состоянии мы имели одну-единственную и четко заданную конфигурацию системы блох.

В целом, основной вывод, который следует из рассмотренного примера, состоит в следующем. Если мы позволяем определенному количеству, скажем n, блох занимать площадь, в 64 раза большую площади, на которой они находились изначально, то число возможных конфигураций для такой системы умножается на 64>n. Если бы мы рассмотрели другое отношение площадей, скажем конечную площадь в 10 раз больше начальной, то число возможных конфигураций умножилось бы на 10>n. И если бы мы рассмотрели не блох на шахматной доске, а, скажем, мух, исходно ограниченных небольшим объемом и затем выпущенных летать по всему объему комнаты, то число возможных конфигураций нужно было бы умножить на фактор r>n, где r – отношение конечного объема к начальному, а n – количество мух. Существенным моментом для дальнейшего обсуждения является то, что число n независимых элементов (или «корпускул») рассматриваемой системы появляется в виде отношения объемов, доступных для системы в конечном и начальном состояниях.

Энтропия и беспорядок

В физике, если имеется система, для которой указаны лишь некоторые глобальные макроскопические характеристики, такие как ее полная энергия и объем, в котором она находится, энтропией называется логарифм числа возможных микроскопических конфигураций системы (также называемых «микроскопическими состояниями»). Напомним, что логарифм числа, по существу, определяется как количество цифр его десятичного представления, стоящих перед запятой, минус один{115}. Например, логарифм 10 равен 1, логарифм 100 равен 2, логарифм одного миллиона равен 6. Отметим также, что логарифм единицы равен нулю. Другими словами, логарифм L заданного числа N удовлетворяет условию: N = 10>L. Понятие энтропии было введено в середине XIX в. Рудольфом Клаузиусом, когда он пытался лучше понять основополагающую работу Сади Карно. Клаузиус показал, как можно определить энтропию системы, исходя из знания ее термодинамических характеристик, и предложил в качестве аксиомы хорошо известный всем второй принцип термодинамики, согласно которому энтропия изолированной системы может только возрастать. [Напомним, что первый принцип термодинамики гласит, что энергия сохраняется.] Несколько лет спустя венский физик Людвиг Больцман понял, что второй закон термодинамики имеет под собой статистические основания{116} и что энтропия системы должна быть пропорциональна логарифму числа возможных микроскопических состояний{117}. Это позволило осознать второй закон термодинамики как простое выражение естественной тенденции изолированных систем стремиться к беспорядку. Примером может служить рассмотренная выше система блох, которая из начального «упорядоченного» состояния спонтанно развивается, последовательно занимая всевозможные доступные состояния, и, таким образом, большую часть времени находится в некотором обобщенном состоянии, утратив свой «первоначальный порядок».

Неизвестное уравнение E = hf

В 1905 г. Эйнштейн был одним из немногих физиков, понимавших глубокую связь между энтропией и числом микроскопических состояний{118}. Он знал, как, исходя из закона Вина для излучения внутри печи, рассчитать энтропию и затем количество возможных микроскопических состояний для излучения (с фиксированной частотой


Рекомендуем почитать
Священный Грааль и тайна деспозинов

Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.


Физик в гостях у политика

Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.


Ладога

"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.


Животные защищаются

Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.


Последний рейс "Лузитании"

В 1915 г. немецкая подводная лодка торпедировала один из.крупнейших для того времени лайнеров , в результате чего погибло 1198 человек. Об обстановке на борту лайнера, действиях капитана судна и командира подводной лодки, о людях, оказавшихся в трагической ситуации, рассказывает эта книга. Она продолжает ставшую традиционной для издательства серию книг об авариях и катастрофах кораблей и судов. Для всех, кто интересуется историей судостроения и флота.


Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.