Мир по Эйнштейну. От теории относительности до теории струн - [25]
Через несколько лет Поль Ланжевен (который независимо от Эйнштейна предсказывал существование уравнения E = mc²) предположил, что, возможно, будет легче экспериментально проверить эквивалентность массы и энергии в случае ядерных реакций, в которых происходит рекомбинация или же трансмутация определенных атомных ядер. Первая экспериментальная проверка уравнения E = mc² была получена Кокрофтом и Уолтоном в 1932 г. при бомбардировке протонами лития-7 и изучении событий, когда столкновения вызывали деление ядра мишени на два ядра гелия-4. Поскольку мы обсуждаем здесь ядерные реакции, уместно отметить, что, несмотря на устойчивый миф, уравнение E = mc² никое образом не влекло осознание возможности создания «атомной» (или, точнее, «ядерной») бомбы, ни тем более ее устройства или способа реализации. На самом деле, наиболее простое «объяснение» происхождения огромной энергии, высвобождаемой в результате деления ядер при взрыве бомбы либо в ядерном реакторе, состоит в том, что эта энергия, по сути, есть не что иное, как электроэнергия отталкивания положительно заряженных протонов делящегося ядра. Простой расчет, основанный на законе Кулона для силы взаимодействия между электрическими зарядами, известный с 1790-х гг., и на знании радиуса атомного ядра, дает хорошую оценку энергии, высвобождающейся при делении ядра, без какой-либо нужды апеллировать к эквивалентности между массой и энергией.
Помимо многочисленных научных результатов, вытекающих из утверждения об эквивалентности массы и энергии, E = mc², весьма любопытным его следствием стал процесс плавного переосмысления неизменности материи и осознания ее эфемерности. Со времен греков с их представлениями о неделимости атомов материя рассматривалась как парадигма некоторой постоянной субстанции, лежащей в основе всего реального. Благодаря Эйнштейну материя потеряла свою субстанциальную устойчивость или по крайней мере перестала быть привязанной к определенной форме вещества. Теперь материя может преобразовываться из одного вещества в другое и даже полностью распадаться в «световую энергию» или любое другое излучение, считавшееся ранее «нематериальным»{62}. Весьма ярким примером эфемерности материи является возможность, открытая благодаря эквивалентности массы и энергии, полного распада атома позитрония, состоящего из электрона и позитрона, и перехода в электромагнитное излучение. В начальном состоянии системы имеются две по отдельности абсолютно стабильные частицы материи: обычный отрицательно заряженный электрон (называемый также негатрон) и электрон с положительным зарядом (или позитрон). Начальное «материальное» состояние спонтанно распадается, когда негатрон слишком близко приближается (в классическом смысле) к позитрону, и превращается в конечное «нематериальное» состояние, в котором имеется исключительно электромагнитное излучение (а точнее, два кванта света, см. главу 5). Это явление было обнаружено и подробно изучено в конце 1940-х гг., и с его помощью можно было с большой точностью проверить выполнение уравнения E = mc². Еще более поразительным является обратный феномен, также имеющий многочисленные подтверждения: в качестве начального можно взять «нематериальное» состояние, в котором нет ничего, кроме электромагнитного излучения (например, два сталкивающихся кванта света, обладающих достаточным количеством энергии), и это начальное состояние приводит к появлению двух (или более) «материальных» частиц. Читатель, возможно, подумает, что речь здесь идет о каких-то исключительных ситуациях, практически не имеющих конкретных проявлений для обычной материи вокруг нас. Это далеко не так! Напротив, согласно современной космологии, вся окружающая нас «материя», а также материя, из которой состоим мы сами, не существовала на ранних стадиях расширения Вселенной и возникла из энергии, заключенной в непрерывном поле (подобном электромагнитному полю) и заполняющей все пространство.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.