Мир по Эйнштейну. От теории относительности до теории струн - [24]
Необходимо также отметить, что теории движения электронов Абрагама и Бухерера дают кривые, согласующиеся с экспериментальной кривой значительно лучше, чем кривая, соответствующая теории относительности. Однако, по нашему мнению, эти теории вряд ли достоверны, поскольку их основные предположения о массе движущегося электрона не вытекают из теоретической системы, охватывающей более широкий круг явлений».
Второй пример, где мы видим «в действии» различие точек зрения Эйнштейна и Пуанкаре, дает то единственное взаимодействие между ними, когда-либо имевшее место в связи с теорией относительности. Эйнштейн и Пуанкаре встречались только один раз, в Брюсселе в 1911 г., на первом международном Сольвеевском конгрессе. Этот конгресс был посвящен не столько относительности, сколько начинавшей зарождаться квантовой теории. Между тем Морис де Бройль свидетельствует, что в один прекрасный день, «после того как Эйнштейн изложил свои идеи [о теории относительности]{57}, Пуанкаре спросил его: “Какую механику вы предполагаете в своих рассуждениях?” Эйнштейн ответил: “Никакой механики”, – что, как показалось, сильно удивило его собеседника»[4].
Наконец, отметим, что, хотя первоначально открытие математической структуры пространства-времени специальной теории относительности было сделано в знаменитой статье Пуанкаре в июле 1905 г., Пуанкаре (в отличие от Минковского) никогда не считал, что эта структура может быть действительно основополагающей для физики. Это становится ясно из последнего текста, написанного Пуанкаре по этому поводу за несколько месяцев до смерти. Текст содержит{58} утверждения, которые, взятые вне контекста, могли бы свидетельствовать о том, что Пуанкаре горячо разделял физический интерес в отношении концепции четырехмерного пространства-времени:
«Все происходит, как если бы время было четвертым измерением пространства […] необходимо отметить, что в новой концепции пространства и времени больше не существует двух совершенно отдельных составляющих, которые могли бы быть рассмотрены независимо, но две части, которые тесно переплетаются таким образом, что больше не могут быть разделены».
Однако, на самом деле, в этом тексте Пуанкаре представляет «новую концепцию», или, как он предпочитал говорить, «новое соглашение некоторых физиков» (никогда не упоминая явно ни Эйнштейна{59}, ни Минковского), лишь только для того, чтобы как можно дальше от нее дистанцироваться. В самом деле, последний абзац этого текста гласит:
«Какова будет наша позиция в отношении этих новых концепций? Будем ли мы вынуждены изменить свои выводы [относительно имеющейся у нас свободы для принятия тех или иных соглашений, которые нам кажутся приемлемыми]? Конечно, нет: мы приняли соглашение только потому, что оно казалось нам удобным, и мы сказали, что ничто не может заставить нас отказаться от него. Сегодня некоторые физики хотят принять новое соглашение. И не потому, что они вынуждены. Просто они считают это новое соглашение более удобным, вот и все; и те, кто не разделяет этого мнения, вправе сохранять старый порядок и не нарушать старые привычки. И, между нами, я думаю, это то, что они будут делать долго».
Мы видим здесь (в отличие от эффективного подхода Эйнштейна) бесплодность научной философии Пуанкаре{60}, сводящейся к абсолютной «условности». Возможно, этот слишком критический подход Пуанкаре в сочетании с его скептическим идеализмом, консерватизмом и математическим видением физической реальности помешал ему сначала серьезно отнестись, а затем физически развить понятие структуры пространства-времени, которое ему удалось первым обнаружить.
Эфемерная материя
Плодотворность «новой концепции» Эйнштейна, состоящей в применении принципа относительности в качестве симметрии, устанавливающей реальность, и выводе из него общих свойств материи и ее взаимодействий, стала очевидна очень скоро. Через несколько месяцев после выхода статьи в июне 1905 г. Эйнштейн понял, что из симметрии теории относительности следует замечательный вывод: «масса есть мера энергии, содержащейся в теле», в частности «свет несет массу». Речь идет о самом известном уравнении физики XX в.: E = mc². Здесь m – масса тела, и данное уравнение связывает эту массу с энергией E, которая представляет энергию, «содержащуюся» в теле{61}. Это уравнение потрясает своей простотой и глубиной. Безусловно, оно изменило все представления о материи, которые существовали ранее.
Согласно Ньютону, масса тела считалась его «количеством материи». В то же время на протяжении веков материя представлялась некоторой сохраняющейся при любых трансформациях субстанцией, несмотря на то что ее внешний вид мог изменяться либо она могла трансформироваться в новые формы. Это тот самый знаменитый принцип Лавуазье «ничего не теряется, ничего не создается, все трансформируется», согласно которому масса остается неизменной при всех преобразованиях материи. Лавуазье экспериментально проверил этот закон сохранения массы с помощью различных химических реакций, рекомбинирующих материю в новые формы.
Согласно уравнению Эйнштейна,
Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».