Мир многих миров: Физики в поисках иных вселенных [заметки]

Шрифт
Интервал

1

А.Х. Гут, Инфляционная Вселенная, Addison-Wesley, Reading, 1997, p. 2

2

J. Williams, R. Abrashkin, Danny Dunn and Anti-gravity Paint ("Дэнни Данн и антигравитационная краска"), McGraw Hill, New York, 1957.  

3

K примеру, время можно измерять в годах, а расстояние — в световых годах. (Световой год — это расстояние, проходимое светом за год.) Тогда скорость света c = 1.

4

Письмо Эйнштейна Эренфесту. Цит. По A. Pais. Subtle is the Lord (Oxford University Press, Oxford, 1982).

5

Письмо Эйнштейна Зоммерфельду, 8 февраля 1916 г.

6

Фактически Эйнштейн не дал никакого физического объяснения новому члену. Его современная интерпретация как энергии вакуума и давления была предложена позднее бельгийским физиком Жоржем Леметром.

7

Позднее стало понятно, что эйнштейновская статическая космологическая модель неприемлема даже чисто теоретически, поскольку равновесие притягивающей и отталкивающей гравитации в этой модели является неустойчивым. Если по какой-то причине размеры вселенной Эйнштейна немного увеличатся, плотность вещества уменьшится (поскольку вырастут расстояния между галактиками), тогда как плотность энергии вакуума останется неизменной, будучи зафиксированной космологической постоянной. Следовательно, отталкивающая гравитация вакуума станет теперь сильнее притягивающей гравитации вещества и заставит вселенную расширяться. Это приведет к дальнейшему увеличению объема и еще большей разбалансировке притягивающих и отталкивающих сил. Вселенная, таким образом, войдет в режим ускоряющегося расширения. Аналогично, если размеры статической вселенной немного уменьшатся, притягивающая гравитация вещества победит отталкивание вакуума, и вселенная сколлапсирует в точку. Согласно квантовой теории, небольшие флуктуации размеров вселенной неизбежны, и поэтому вселенная Эйнштейна не может оставаться в равновесии бесконечно долго.

8

Цит. по: Э.А. Тропп, В.Я. Френкель, А.Д. Чернин, "Александр Александрович Фридман", М., "Наука", 1988, с. 133.

9

Фридман не рассматривал случай плоской вселенной. Он был изучен Эйнштейном и де Ситтером в 1932 году.

10

Простая связь между геометрией и судьбой Вселенной сохраняется, только если считать нулевой плотность энергии вакуума (космологическую постоянную). Подробнее об этом в главе 18.

11

Достойным внимания исключением была реакция Эйнштейна на работу Фридмана. Сначала Эйнштейн думал, что Фридман ошибся, и написал короткую заметку в журнал о том, что он считал ошибкой. Однако менее чем через год, после беседы с другом Фридмана Юрием Крутковым, он отказался от своих возражений. Крутков сообщил домой, что он победил в споре с Эйнштейном и что "честь Петрограда спасена!" Но хотя Эйнштейн и согласился с математическими выкладками Фридмана, он по-прежнему верил, что Вселенная статична, а работа Фридмана представляет лишь чисто формальный интерес. В своей второй заметке в журнале он писал, что "убедился в том, что результаты г-на Фридмана корректны и ясны". В первоначальном черновике он добавил, что эти результаты вряд ли могут иметь какое-то значение для физики, но потом зачеркнул данную фразу, видимо, поняв, что она основана в большей мере на его философских предубеждениях, чем на каких-то известных фактах.

12

Модель расширяющейся Вселенной была переоткрыта в 1927 году Жоржем Леметром. Как и работа Фридмана, статья Леметра оставалась совершенно неизвестной вплоть до открытия Хаббла.

13

Источник энергии звезд не был известен во времена Гельмгольца, но теперь мы знаем, что они сжигают ядерное топливо, превращая водород в гелий, а затем и в более тяжелые ядра. Это необратимый процесс, сопровождаемый повышением энтропии, и в конце концов звезды исчерпывают свое ядерное топливо. Некоторые звезды выключают свои ядерные двигатели без большой помпы и потом постепенно остывают, другие взрываются, распыляя газ по межзвездному пространству и оставляя после себя компактный остаток (нейтронную звезду или черную дыру). Выброшенный газ может повторно послужить для формирования нового поколения звезд, но раньше или позже поступления газа иссякнут, поскольку все большая его часть будет заканчивать свой путь в компактных звездных остатках. Спустя триллион лет галактики, вероятно, значительно потускнеют. Процесс постепенного угасания огней может порядком затянуться, но одно ясно: Вселенная, какой мы ее знаем, не может существовать вечно.

14

Больцман установил связь между энтропией и беспорядком, прояснив тем самым смысл второго начала термодинамики.

15

Идея больцмановских флуктуации — это, возможно, первый пример того, что позже стали называть антропной аргументацией (см. главу 13).

16

Первое убедительное свидетельство галактической эволюции было представлено в 1950-х годах кембриджским астрономом Мартином Райлом (Martin Ryle). Он обнаружил, что несколько миллиардов лет назад мощное радиоизлучение встречалось у галактик гораздо чаще, чем ныне.

17

Артур Конан Дойл, "Знак четырех", пер. М. Литвиновой.

18

Цит. по статье Р.Г. Стьюера (R.H. Stuewer) в сб. "Калейдоскоп науки" (The Kaleidoscope of Science, ed. By E. Ullmann-Margalit, Reidel, Dordrecht, 1986, p. 147).

19

Описание жизни Гамова в этой главе основано по большей части на его неоконченной автобиографии "Моя мировая линия" (My World Line, Viking Press, New York, 1970).

20

В шкале Кельвина, часто применяемой физиками, температуры измеряются в единицах стоградусной шкалы начиная от абсолютного нуля (-273 градуса Цельсия). Для очень высоких температур, о которых здесь идет речь, разница между шкалами Цельсия и Кельвина несущественна.

21

Атомы состоят из маленьких положительно заряженных ядер и отрицательно заряженных электронов, "обращающихся" вокруг них. (Я помещаю слово "обращающихся" в кавычки, поскольку в атомах существенна квантовая неопределенность, так что вместо картины электронов, упорядоченно движущихся вдоль своих орбит, подобно планетам вокруг Солнца, более точным было бы рисовать их "размазанными" вокруг этих орбит.) Ядра состоят из двух типов субатомных частиц: протонов, несущих положительный электрический заряд, и нейтронов, которые электрически нейтральны. Химические свойства атома определяются исключительно числом электронов (которое равно числу протонов, так что атомы электрически нейтральны).

22

Происхождение этого дисбаланса между веществом и антивеществом — один из активно исследуемых вопросов в современной космологии. Ее обсуждение см. в книге А.Н. Guth, The Inflationary Universe (Addison-Wesley, Reading, 1997).

23

Присутствуют также очень легкие слабо взаимодействующие частицы — нейтрино. Я их здесь не рассматриваю, поскольку они не важны для нашей истории.

24

Важное исключение составляют радиоактивные элементы, подобные урану, которые самопроизвольно распадаются на более легкие. Атом урана превращается в свинец в среднем за 4,5 миллиарда лет, из-за чего количество урана постепенно уменьшается. В действительности наши лучшие оценки возраста Земли получены путем измерения относительных количеств урана и свинца.

25

Более подробное обсуждение горячего огненного шара и образования элементов можно найти в классическом бестселлере Стивена Вайнберга "Первые три минуты" (РХД, 2000) (Steven Weinberg, The First Three Minutes, Bantam, New York, 1977).

26

M.J. Rees, Before the Beginning ("До начала"), Addison-Wesley, Reading, 1997, p. 17).

27

Steven Weinberg, The First Three Minutes, Bantam, New York, 1977, c. 123.

28

Световой год — это расстояние, проходимое светом за год. Оно составляет около 10 триллионов километров.

29

Мы говорим, что электромагнитная волна рассеивается, когда она поглощается и переизлучается заряженной частицей. Поэтому поверхность последнего рассеяния можно также описать как поверхность, с которой было испущено космическое излучение.

30

Зонд WMAP (Wilkinson Microwave Anisotropy Probe — зонд им. Уилкинсона для изучения анизотропии микроволнового фона).

31

Все подробности пути Алана Гута к открытию инфляции описаны в его блестящей книге "Инфляционная Вселенная: в поисках новой теории происхождения космоса" (The Inflationary Universe: The Quest for a New Theory of Cosmic Origins, Addison-Wesley, Reading, 1997).

32

Вполне возможно, что наш вакуум не является самым низкоэнергетическим. Теория струн, которая на сегодня является основным кандидатом на роль самой фундаментальной физической теории, предполагает существование вакуумов с отрицательной энергией. Если они действительно существуют, то наш вакуум спонтанно распадется с катастрофическими последствиями для всех содержащихся в нем материальных объектов. Мы обсудим теорию струн в главе 15, а возможность распада вакуума — в главе 18. А пока будем предполагать, что обитаем в истинном вакууме.

33

Этот вывод легко понять из простых энергетических соображений. Сила всегда действует на физический объект в направлении уменьшения его энергии. (Точнее, потенциальной энергии, которая представляет собой составляющую энергии, не связанную с движением.) Например, сила гравитации тянет объекты вниз, в направлении убывания их энергии. (Гравитационная энергия растет с высотой над землей.) Для ложного вакуума энергия пропорциональна объему, который он занимает, и может быть уменьшена только сокращением объема. Поэтому должна существовать сила, вызывающая сжатие вакуума. Эта сила и есть натяжение.

34

A. Guth, "The inflationary universe: A possible solution to the horizon and flatness problems" ("Инфляционная Вселенная: возможное решение проблемы горизонта и плоской геометрии"), Physical Review, vol. D23, p. 347 (1981).

35

По окончании инфляции плотность вещества постоянно снижается вместе с расширением Вселенной, а значит, области пространства, которые поторопились закончить инфляцию, будут уже немного разреженными к тому времени, когда другие, более медлительные регионы наконец завершат инфляционное расширение.

36

Модель Старобинского основывается на модифицированных уравнениях гравитации Эйнштейна. Данная модификация становится существенной только при очень высокой кривизне пространства-времени. Величина этой кривизны играет в данной теории роль скалярного поля.

37

Официальное название заболевания — боковой амиотрофический склероз.

38

Муханов ныне работает в Максимилиановском университете в Мюнхене; см. рис. 6.5.

39

В истинно русском стиле Муханов и Чибисов написали свою статью "для Ландау", приведя в ней свой результат и минимум пояснений о том, как он был получен. Некоторые участники Наффилдовского симпозиума считают, что в этих выкладках могли быть пропущены важные шаги, и поэтому получение данного результата нельзя полностью отнести на счет Муханова и Чибисова. Я не буду пытаться разрешить здесь этот вопрос.

40

По мере того как скалярное поле медленно скатывается вниз по энергетическому склону, флуктуации становятся слабее, а вызываемые ими возмущения — меньше. Однако скатывание происходит так медленно, что положение не успевает значительно измениться за то время, пока генерируются возмущения для всех доступных астрофизике масштабов.

41

Эраст Глинер, Старобинский и Линде в СССР, Кацухико Сато (Katsuhiko Sato) в Японии и Роберт Брут (Robert Brout), Франсуа Энглер (Francois Englert) и Эдгар Гунзиг (Edgard Gunzig) в Бельгии — все они рассматривали возможность периода экспоненциального расширения в ранней Вселенной. Сато был также в курсе проблемы изящного выхода.

42

От англ. field — "поле". — Примеч. перев.

43

Слово "кикспэн" (kickspan) образовано от англ. слов kick — "толчок" и span — "величина", "амплитуда". Это максимальное расстояние, на котором возможна коммуникация в инфляционной Вселенной. Оно равно критическому размеру кусочка ложного вакуума, необходимого для инфляции (см. главу 6): 1 миллиметр для электрослабого вакуума и в 10>13 раз меньше для вакуума Великого объединения. Это расстояние играет роль горизонта в расширяющейся инфляционной Вселенной.

44

Термин "период полураспада" происходит из ядерной физики, где он означает время, в течение которого распадается половина атомов в образце радиоактивного вещества.

45

Алан Гут называет эти острова "карманными вселенными". Однако Ленни Сасскинд (Lenny Susskind) отметил, что это уничтожает всякую романтику. (Следует отметить, что в первой половине прошлого века термином "островные вселенные" в научно-популярной литературе называли галактики. — Примеч. перев.)

46

Во избежание путаницы с этого момента я буду пользоваться термином "Большой взрыв" для обозначения конца инфляции, а начальное (или конечное) состояние с бесконечной кривизной и плотностью буду называть сингулярностью.

47

A. Vilenkin, "The birth of inflationary universes" ("Рождение инфляционных вселенных"), Physical Review, vol. D27, p. 2848 (1983). Это статья о квантовой космологии; вечная инфляция обсуждается в последнем разделе.

48

Экспоненциально раздувающаяся область быстро заполнила бы компьютерный экран, заставив нас остановить моделирование. Мы справились с этой проблемой, используя расширяющуюся шкалу расстояний, которая росла в том же темпе, что и область инфляции. Если пользоваться такой растягивающейся линейкой, величина объема инфлирующего ложного вакуума не меняется во времени, и он занимает постоянную площадь на экране. В аналогии с экономической инфляцией, которую мы использовали в главе 5, этот способ измерения соответствует выражению цен в "первоначальных долларах", благодаря чему эффект инфляции исключается.

49

М. Aryal and A. Vilenkin, "The fractal dimension of the inflationary universe" ("Фрактальная размерность инфляционной вселенной"), Physics Letters, vol. B199, p. 351 (1987).

50

A.D. Linde, "Eternally existing self-reproducing chaotic inflationary universe" ("Вечно существующая самовоспроизводящаяся хаотическая инфляционная вселенная"). Physics Letters, vol. В175, p. 395 (1986). Термин "вечная инфляция" был введен Линде в этой статье.

51

Ускоренное расширение Вселенной было открыто Группой по сверхновым с большими красными смещениями (High-Z Supernova Search Team) под руководством гарвардского астронома Роберта Киршнера (Robert Kirshner) и Брайана Шмидта (Brian Schmidt) из обсерватории Сайдинг Спрингс в Австралии, а также Проектом по сверхновым в космологии (Supernova Cosmology Project), возглавляемым Солом Перлмуттером (Saul Perlmutter). Из первых рук об этом открытии можно прочесть в остроумной книге Роберта Киршнера "Экстравагантная Вселенная: взрывающиеся звезды, темная энергия и ускоряющийся космос" (The Extravagant Universe: Exploding Stars, Dark Energy, and the Accelerating Cosmos, Princeton University Press, Princeton, 2004).

52

Расстояние до сверхновой, которое определяется по ее видимому с Земли блеску, говорит о том, как долго свет от нее шел к нам, а значит, и о том, когда случился взрыв. Покраснение света (доплеровское смещение) можно использовать для оценки скорости космологического расширения в то время. Подробнее об этом см. главу 14.

53

В следующих главах будут упомянуты некоторые другие возможности. Многие физики склонны к агностицизму в отношении причин космологического ускорения и говорят о нем как о "темной энергии".

54

Если же, с другой стороны, наблюдения покажут, что плотность превышает критическую более чем на одну стотысячную, следствием будет то, что Вселенная представляет собой относительно небольшую трехмерную сферу, ненамного крупнее современного горизонта. Для инфляции это создаст очень серьезные проблемы.

55

Он назван в честь первооткрывателя квантовой физики Макса Планка, который вывел формулу, описывающую, как энергия теплового излучения распределена между волнами различной частоты. Спутник был запущен 14 мая 2009 года.

56

Происхождение гравитационных волн аналогично появлению возмущений плотности (см. главу 6). Они порождаются квантовыми флуктуациями в ходе инфляции, амплитуда которых не зависит от линейного масштаба. Предсказание относительно гравитационных волн вытекает из работы Алексея Старобинского, выполненной в 1980 году, еще до того, как Гут предложил идею инфляции.

57

QUIET начал работу в ноябре 2009 года. Он способен детектировать гравитационные волны, порожденные инфляцией, но только если ложный вакуум имел энергетический масштаб Великого объединения. Для не столь энергичного вакуума потребуются более чувствительные инструменты.

58

Напомним, что мы договорились отождествлять Большой взрыв с концом инфляции.

59

A.D. Linde, "Life after inflation" ("Жизнь после инфляции"), Physics Letters, vol. B211, p. 29,1988.

60

В плоском пространстве-времени квадрат интервала между двумя событиями определяется как (разность во времени)>2  (расстояние в пространстве)>2. За исключением знака "минус" это очень похоже на вычисление квадрата гипотенузы по теореме Пифагора. Для вычисления интервала расстояния в пространстве и времени должны выражаться в совместимых единицах. Например, если время измеряется в годах, то мерой длины должны быть световые годы. Интервал времени-подобен, если его квадрат положителен, и пространственно-подобен, если отрицателен. Для встречи класса и матча по суперболу, которые обсуждаются в тексте, разница во времени составляет 3 года, а расстояние в пространстве — 4 световых года. Значит, квадрат интервала будет 32  42 = 7. Поэтому интервал является пространственно-подобным.

61

Как и раньше, ПБВ означает "после Большого взрыва".

62

Состояние движения наблюдателя также влияет на показания его часов. Еще раз подчеркнем, что во вселенной Фридмана существует естественный выбор: наблюдатели, которые покоятся по отношению к галактикам (или частицам вещества) в местах своего размещения. Это так называемые "сопутствующие наблюдатели".

63

С той оговоркой, что замкнутая Вселенная подобна трехмерной сфере, тогда как поверхность Земли имеет только два измерения.

64

Традиционная каталонская каменная усадьба или ферма. — Примеч. перев.

65

Это ограничение неприложимо к областям, превосходящим размеры космического горизонта. Предполагается, что на пределе оно применимо к О-региону, который по размерам совпадает с горизонтом.

66

От слова "гуголплекс" — названия числа 10 в степени 10>100.

67

 Мы писали статью в 2001 году, сразу после весьма спорных выборов в США, на которых Джордж Буш обошел Эла Гора на очень небольшую величину.

68

J. Garriga and A. Vilenkin, "Many worlds in one" ("Много миров в одном"), Physical Review, vol. D64, p. 043511 (2001).

69

A.D. Sakharov, in Alarm and Hope (в сб. "Тревога и надежда"), eds. Yankelevich and A. Friendly (Knopf, New York, 1978).

70

G.F.R. Ellis and G.B. Brundrit, Life in the infinite universe ("Жизнь в бесконечной Вселенной"), Quarterly Journal of the Royal Astronomical Society, vol. 20, p. 37 (1979).

71

Глубокое обсуждение многомировой интерпретации, стимулирующее ее дальнейшее осмысление, можно найти в книге David Deutsch, The Fabric of Reality (Дэвид Дойч, "Ткань реальности"), Penguin, New York, 1997.

72

Цитируется по: G. Edelman, Bright Air, Brilliant Fire: On the Matter of the Mind, Penguin, New York, 1992, p. 216.

73

По выражению Дэвида Мермина (David Mermin), см. Physics Today, April 1989, p. 9.

74

Эта точка зрения близка к копенгагенской интерпретации, за тем исключением, что не настаивает на присутствии внешнего наблюдателя.

75

Из свидетельских показании президента Клинтона перед большим жюри 17 августа 1998 года.

76

Далее в главе 17 мы увидим, что в действительности есть серьезные основания верить в существование совершенно не связанных вселенных.

77

Нашим возможностям путешествовать в другие О-регионы может помешать наблюдаемое ускорение расширения Вселенной, вызванное постоянной энергией вакуума. В этом случае галактики других О-регионов будут удаляться все быстрее и быстрее, и мы никогда не сможем их догнать. Некоторые модели, однако, предсказывают, что энергия вакуума будет постепенно снижаться, как это происходило в период инфляции. В таком случае не будет никаких принципиальных ограничений на дальность путешествий.

78

Пример энергетического ландшафта, предназначенного для того, чтобы избежать вечной инфляции, показан на следующем рисунке (сравните с рис. 6.4).

Плоская вершина холма, ответственная за вечную инфляцию, заменена крутым пиком. В то же время пологий склон должен быть сохранен, поскольку без него инфляции не будет вовсе. Такие ландшафты вряд ли могут появиться в физике элементарных частиц. Практически во всех предложенных на сегодня моделях инфляция вечна.

79

Некоторые этические следствия новой картины мира обсуждаются в статье "Philosophical implications of inflationary cosmology" ("Философские следствия инфляционной космологии"), написанной мною в соавторстве с философом Джошуа Ноубом (Joshua Knobe) и моим коллегой по Тафтсу Кеном Оламом (Ken Olum), которая опубликована в марте 2006 года в The British Journal of the Philosophy of Science.

80

Наносекунда — одна миллиардная доля секунды.

81

Первое надежное измерение флуктуации электромагнитного вакуума выполнено только в 1990-х годах методом, предложенным десятки лет назад голландским физиком Хендриком Казимиром. Две металлические пластины помещают в вакууме параллельно друг другу. Металл подавляет электромагнитные колебания, и это приводит к уменьшению вакуумных флуктуации между пластинами. Давление флуктуирующих полей на внешние поверхности пластин оказывается больше, чем на внутренние, что приводит к появлению силы, прижимающей пластины друг к другу. Эта сила очень мала и быстро спадает с увеличением расстояния между пластинами. Измерения проводились с пластинами, разделенными интервалом в один микрон (миллионную долю метра).

82

Они называются в часть Шатьендраната Бозе и Эрнико Ферми, которые сформулировали их отличительные свойства.

83

Названы в честь немецкого математика XIX века Германа Грассмана, который ввел их в оборот.

84

Про уравнение говорят, что оно обладает симметрией, если существует некоторая операция, при которой оно остается неизменным. Например, уравнение x + y = 1 не меняется, если поменять местами x и y.

85

Именно это происходит в тех теориях элементарных частиц, где есть особый вид симметрии, называемый суперсимметрией. Бозоны и фермионы в таких теориях появляются парами, так что каждая бозе-частица имеет фермионного партнера и наоборот. Частицы-партнеры в каждой паре имеют одинаковую массу, а ваккумные энергии фермионов и бозонов в точности сокращаются. Поэтому полная плотность энергии вакуума равна нулю.

Это могло бы оказаться изящным решением проблемы космологической постоянной, но беда в том, что наш мир определенно не суперсимметричен. В противном случае на ускорителях наблюдалось бы рождение многочисленных партнеров электронов, кварков и фотонов. Кроме того, даже в суперсимметричном мире космологическая постоянная сокращается только в отсутствие гравитации. Если же принять ее в расчет, то энергия вакуума приобретает большое отрицательное значение.

86

Численное значение массы зависит от используемых единиц измерения — граммов, унций или атомных единиц, но соотношение двух масс, такое как 1836, не зависит от нашего выбора.

87

 Craig J. Hogan, "Quarks, electrons and atoms in closely related universes", in Universe or Multiverse, ed. by B.J. Carr, Cambridge University Press, Cambridge, 2006 (Крэйг Хоган, "Кварки, электроны и атомы в тесно связанных вселенных" в сб. "Вселенная или мультиверс" под редакцией Б.Дж. Карра).

88

Значения некоторых из этих констант, в особенности тех, что описывают свойства нейтрино, до сих пор неизвестны.

89

Распад сопровождается испусканием антинейтрино.

90

На более глубоком уровне протоны и нейтроны состоят из кварков, так что боле корректно рассматривать массы нуклонов как величины, производные от масс кварков, которые уже являются настоящими фундаментальными постоянными. Это, однако, не меняет общего вывода. Изменение масс кварков на несколько процентов приводит либо к нейтронному, либо к водородному миру.

91

Заметим, что даже после усиления в миллион раз гравитация по-прежнему будет в 10>34 раза слабее электромагнетизма.

92

Многочисленные наглядные примеры тонкой настройки фундаментальных постоянных обсуждаются в статье Бернарда Карра и Мартина Риса в журнале Nature (Bernard J. Carr and Martin J. Rees in Nature, vol. 278, p. 605,1979), и в книгах "Случайная Вселенная" Пола Дэвиса (Paul C.W. Davies, The Accidental Universe, Cambridge University Press, Cambridge, 1982), "Антропный космологический принцип" Джона Барроу и Фрэнка Типлера (John D. Barrow, Frank J. Tipler, The Anthropic Cosmological Principle, Oxford University Press, Oxford, 1986) и "Вселенные" Джона Лэсли (Universes, Routledge, London, 1989). Легко доступные для понимания популярные обзоры даны в книгах Мартина Риса "До начала: наша Вселенная и другие" (Martin Rees, Before the Beginning: Our Universe and Others, Addison-Wesley, Reading, 1997) и "Всего шесть чисел" (Martin Rees, Just Six Numbers, Basic Books, New York, 2001).

93

Ныне он работает в обсерватории Медон во Франции.

94

В. Carter, "Large number coincidences and the anthropic principle in cosmology", in Confrontation of Cosmological Theories with Observational Data, ed. by M.S. Longair, Reidel, Boston, 1974, p. 132. (Б. Картер, "Совпадение больших чисел и антропный принцип в космологии" в сб. "Сопоставление космологических теорий с наблюдательными данными" под ред. М.С. Лонгэйра).

95

Философы часто определяют Вселенную как "все сущее". Тогда, конечно, не может быть никаких других вселенных. Физики обычно не используют данный термин в столь широком смысле и говорят о совершенно не связанных, самодостаточных пространствах-временах как об отдельных вселенных. Здесь я следую именно этой физической традиции.

96

Звезды менее массивные, чем Солнце, живут дольше. Однако они склонны к нестабильности и подвержены вспышкам, способным уничтожить жизнь на планетах. Мы предполагаем, что планеты, обращающиеся вокруг таких звезд, не годятся на роль дома для потенциальных наблюдателей.

97

Можно представить, что высокоразвитая цивилизация сумеет пережить смерть звезд, используя ядерную или приливную энергию для поддержания жизни. Но более вероятным кажется, что цивилизации живут относительно недолго. Я касаюсь этого вопроса в примечании i в конце этой главы.

98

Дикке обнародовал этот аргумент в 1961 году в ответ на захватывающую гипотезу, выдвинутую знаменитым британским физиком Полом Дираком. Дирак был поражен слабостью гравитации, которая в 10>40 раз слабее электромагнитного взаимодействия. Он также заметил, что видимая Вселенная в 10>40 раз больше протона. Мысль Дирака состояла в том, что это не может быть простым совпадением, и предположил, что эти два числа должны быть каким-то образом связаны. Но размер наблюдаемой Вселенной увеличивается во времени, и поэтому его отношение к размерам протона в последующие эпохи будет расти. Это привело Дирака к заключению, что другое число, выражающее слабость гравитации, тоже должно увеличиваться: гравитация должна становиться все слабее.

Аргумент Дикке дал совершенно иной взгляд на совпадение больших чисел. Мы наблюдаем Вселенную не в произвольную эпоху, а в то время, когда ее возраст сравним со временем жизни звезд. Дикке показал, что именно в это время дираковские большие числа действительно близки друг к другу. (Это не совпадение: видимая Вселенная велика, поскольку велика продолжительность жизни звезд, а она, в свою очередь, связана со слабостью гравитации, что и задает связь между двумя большими числами.) Таким образом, совпадение автоматически обеспечивается в эпоху, когда могут существовать наблюдатели, и не требуется постулировать никакого ослабления гравитации. Точные астрономические измерения позднее показали, что сила гравитации остается постоянной с очень высокой точностью. Если и есть изменения, они должны быть меньше, чем 1 к 10>11 в год, — гораздо меньше, чем требует гипотеза Дирака.

99

Сам Картер внес свой вклад в общую путаницу, введя альтернативную версию принципа, называемую "сильным антропным принципом", гласящую, что "...Вселенная... должна быть такой, чтобы на определенной стадии допускать появление наблюдателей". Многие восприняли эту формулировку в мистическом смысле — как указание на определенного рода теологическую необходимость. В этой книге я следую первоначальной формулировке Картера, которую он называет "слабым антропным принципом".

100

N. Bostrom, Anthropic Bias (Ник Востром, "Антропный уклон"), Routeledge, New York, 2002.

101

Цитируется по: A.L Macay, A Dictionary of Scientific Quotations (А.Л. Maкей, "Словарь научных цитат"), Institute of Physics Publishing, Bristol, 1991, p. 244.

102

Дэвид Гросс (David Gross), цитируется no статье Денниса Овербая "Мириады вселенных? Или нашей повезло?" в газете "Нью-Йорк Тайме" (Dennis Overbye "Zillions of universes? Or did ours get lucky?", The New York Times, October 28, 2003).

103

Пол Стейнхардт (Paul Steinhardt), цитируется по статье "Холодный прием" Маркуса Чоуна (Marcus Chown, "Out in the cold", New Scientist, June 10, 2000).

104

Чтобы высота заметно изменилась, пьяница должен пройти большое расстояние вдоль очень пологого склона, Вселенная за это время испытает колоссальное расширение.

105

Неизвестно, существуют ли в действительности скалярные поля, постулируемые Линде. Мы вернемся к этому вопросу в главе 15.

106

Аргумент судного дня — захватывающий и противоречивый предмет. Более глубоко он обсуждается в книгах Джона Лесли "Конец света" (John Leslie, The End of the World, Routeledge, London, 1996) и Ричарда Готта "Путешествия во времени в эйнштейновской вселенной" (Richard Gott, Time Travel in Einstein's Universe, Houghton Mifflin Company, Boston, 2001).

107

В бесконечной вселенной коэффициент объема можно определить как долю, занятую областями данного типа. Но это определение приводит к неоднозначности. Чтобы проиллюстрировать природу проблемы, зададимся вопросом: какова доля нечетных чисел среди целых? Четные и нечетные числа чередуются в последовательности 1, 2, 3, 4, 5, ..., и можно подумать, что ответом, очевидно, будет половина. Однако целые числа можно упорядочить другим способом. Например, так: 1, 2, 4, 3, 6, 8, ... . Эта последовательность по-прежнему включает все целые числа, но теперь за каждым нечетным числом следует два четных, и кажется, что только треть целых чисел являются нечетными. Такого же рода неопределенность возникает при вычислении объемного коэффициента в моделях вечной инфляции. Чтобы справиться с этой проблемой, был предложен ряд интересных идей, но пока она остается неразрешенной.

108

Это, конечно, чрезмерное упрощение. Галактики бывают разных размеров — от карликовых до гигантских, с весьма различным числом звезд, а значит, и наблюдателей. Тем не менее абсолютное большинство звезд находится в гигантских галактиках, подобных нашей. Так что задачу можно решить, подсчитывая только такие галактики и не обращая внимания на остальные

Более серьезная проблема связана с тем, что плотность вещества и другие характеристики галактик могут меняться из-за вариаций бионейтральных констант. Например, если параметр плотности возмущений Q делается больше, галактики образуются раньше и имеют более высокую плотность вещества. Как результат, тесные сближения звезд, нарушающие орбиты планет и уничтожающие жизнь, становятся чаще. (На это указали Макс Тегмарк (MaxTegmark) и Мартин Рис в статье, опубликованной в 1998 году в Astrophysical Journal.) Даже если сближения не настолько тесны, чтобы влиять на планеты, они могут возмущать облака комет на окраинах звездных систем, посылая смертельные кометные дожди на внутренние планеты. Еще одна опасность в более плотных галактиках — это потенциально опустошительное воздействие близких взрывов сверхновых. Количественно оценить влияние всех этих факторов на плотность обитаемых звездных систем — крайне сложная, хотя в принципе разрешимая задача. Но пока в этом деле трудно пойти дальше порядковых оценок.

109

Антропная граница, полученная Вайнбергом, была слишком велика — примерно в 500 раз выше средней плотности вещества во Вселенной. В середине 1990-х наблюдательные данные уже говорили о том, что в нашей области пространства космологическая постоянная почти в 50 раз меньше. Кроме того, определение границы Вайнберга основывалось на данных о самых далеких галактиках, известных в конце 1980-х. На сегодня открыты еще более далекие галактики, и соответствующая граница была бы в 4 000 раз больше средней плотности вещества.

110

A. Vilenkin, "Predictions from quantum cosmology" (А. Виленкин, "Предсказания квантовой космологии"), Physical Review Letters, vol. 74, p. 846,1995.

111

Подход Эфстатиу несколько отличался от моего. Он предполагал, что мы типичны только среди ныне существующих наблюдателей (галактик), тогда как я считал нужным учитывать всех наблюдателей — современных, прошлых и будущих. Если мы действительно типичны и живем в ту же эпоху, что и большинство наблюдателей, эти методы должны давать сходные результаты, как фактически и получается. Но в общем случае выбор референтного класса наблюдателей, в котором мы ожидаем оказаться типичными, — это важный вопрос. Он подробно обсуждался философом Ником Бостромом.

112

Об этом мне рассказал Шон Кэрролл (Sean Carroll) из Чикагского университета.

113

На самом деле мощность сверхновых типа Ia несколько варьируется, вероятно, из-за различий в химическом составе белых карликов. Но эти вариации можно учесть, измеряя длительность вспышки: зависимость мощности от длительности хорошо изучена.

114

Доплеровское смещение — это изменение частоты электромагнитных волн при движении источника и приемника волн друг относительно друга. Если вы приближаетесь к источнику света, частота волн увеличивается, подобно тому как лодка встречает больше волн, когда движется им навстречу. Такой же эффект имеет место, когда источник света приближается к неподвижному наблюдателю: важно только их относительное движение. Подобным же образом частота света, испускаемого галактикой, становится ниже (свет смещается к красному концу спектра), когда она удаляется от наблюдателя.

115

В космологии Z традиционно используется для обозначения красного смещения.

116

Цит. по R. Krishner, The Extravagant Universe (P. Кришнер, "Экстравагантная Вселенная"), University Press, Princeton, 2002, p. 221.

117

Муханов — тот самый человек, который первым вычислил плотность возмущений, возникающих вследствие квантовых флуктуации в ходе инфляции (см. фото на рис. 6.5).

118

Здесь термин "Вселенная" используется в значении "видимая Вселенная", а "возраст Вселенной" — в смысле "время, прошедшее с момента Большого взрыва в нашей области пространства".

119

Возможность благодаря космологической постоянной избавиться от несоответствия возрастов старейших звезд и Вселенной отмечал еще в 1980-х годах Жерар де Вокулер (Gerard de Vaucouleurs). Позднее на это наряду с другими потенциальными преимуществами указывали Лоуренс Краусс (Lawrence Krauss) и Майкл Тернер (Michael Turner) в статье "Космологическая постоянная возвращается" ("The cosmological constant is back", General Relativity and Gravitation, vol. 27, p. 1137, 1995).

12

Популярный обзор идеи квинтэссенции содержится в книге Лоуренса Краусса "Квинтэссенция: Загадка недостающей массы" (Lawrence Krauss, Quintessence: The Mystery of the Missing Mass, Basic Books, New York, 2000).

121

Другое затруднение модели квинтэссенции состоит в том, что плоское подножие холма, как считается, лежит на нулевом уровне плотности энергии. Это эквивалентно предположению о том, что энергии флуктуирующих фермионов и бозонов чудесным образом компенсируют друг друга (см. главу 12).

122

По-видимому, мы не случайно обитаем в диске гигантской галактики. Образование галактик — это иерархический процесс, в ходе которого небольшого размера плотные объекты сливаются, формируя более крупные и рыхлые. Ранние плотные галактики меньше подходили для жизни по причинам, отмеченным в примечании [108].

123

Такое объяснение совпадения приведено в статье, написанной мной совместно с Хауме Гарригой и Марио Ливио (Mario Livio) "Космологическая постоянная и время ее доминирования" (Physical Review, vol. D61, p. 023503, 2000). Независимо эта идея была предложена Сиднеем Бладменом (Sidney Bludman) в Nuclear Physics, vol. Аббз, p. 865, 2000.

124

Другим важным вкладом Менделеева в культуру было совершенствование рецепта русской водки.

125

Другими словами, любые два атома с различным числом населенных оболочек, но с одинаковым числом электронов на внешней оболочке демонстрируют сходное химическое поведение.

126

Позитроны — это античастицы электронов. Мюоны — нестабильные частицы, очень похожие на электроны, но в 200 раз тяжелее.

127

Большинство из этих новых частиц неустойчивы и быстро распадаются на уже знакомые нам стабильные частицы.

128

Цит. по книге Найджела Калдера, "Ключ ко Вселенной" (Nigel Calder, The Key to the Universe, Penguin Books, New York, 1977, p. 69).

129

В 1970-1980-х годах физики пытались достичь более единообразного описания частиц и их взаимодействий в рамках так называемых теорий Великого объединения. Первая модель этого типа была предложена Говардом Джорджи (Howard Georgi) и Шелдоном Глэшоу из Гарварда, которые показали, что всю Стандартную модель вместе с ее отдельными симметриями для сильного и электрослабого взаимодействий можно элегантно вписать в теорию, которая имеет одну, но более мощную симметрию. Более того, эта модель дала единое описание для трех фундаментальных взаимодействий. Великое объединение — очень привлекательная идея, и многие физики верят, что она сохранится как часть окончательной теории. Однако в теории Великого объединения сохраняются почти все недостатки Стандартной модели. В частности, она требует еще большего числа подстраиваемых параметров, а гравитация по-прежнему остается за бортом.

130

Широкий круг вопросов, касающихся существования (или несуществования) окончательной теории, обсуждается в книге Стивена Вайнберга "Мечты об окончательной теории" (Steven Weinberg, Dreams of a Final Theory, Vintage, New York, 1994).

131

Космология дает интересную возможность наблюдательной проверки теории струн. В результате высокоэнергетических процессов в конце инфляции могли образоваться струны астрономического размера. Подобно "обычным" космическим струнам (см. главу 6) эти фундаментальные струны будут впоследствии доступны для наблюдения. Струны не испускают света и потому непосредственно не видны, но их присутствие может быть обнаружено по гравитационным эффектам. Световые лучи далеких галактик, расположенных позади длинной струны, искривляются ее притяжением, и мы можем видеть по соседству два изображения галактики, образованных лучами, прошедшими с двух сторон от струны. Колеблющиеся струнные петли служат мощными источниками гравитационных волн. Существующие и перспективные детекторы гравитационных волн будут искать характерные для них сигналы.

132

Недавние работы Наймы Аркани-Хамеда (Nima Arkani-Hamed) из Гарварда, Гии Двали (Gia Dvali) из Нью-Йоркского университета и Саваса Димипоулоса (Savas Dimipoulos) из Стэнфорда говорят о том, что компактные измерения могут быть гораздо больше, чем считалось прежде. В этом случае размеры вибрирующих струнных петель также значительно возрастают. Это означает, что следующее поколение ускорителей может оказаться достаточно мощным, чтобы открыть "струнную" природу частиц.

133

Яркое изложение этой философии, а также более подробное описание теории струн можно найти в книге Брайана Грина "Элегантная Вселенная" (Brian Greene, The Elegant Universe, Vintage Books, New York, 2000).

134

Теория также включает множество других сущностей (например, потоки, похожие на магнитные поля), но здесь я не буду о них рассказывать.

135

В присутствии бран струны могут образовывать замкнутые петли, но могут также быть и открытыми, с концами, присоединенными к бранам. Такие открытые сегменты струн могут двигаться вдоль бран, но никогда их не покидают. Браны играют центральную роль в так называемом "мире бран" — космологической модели, которая предполагает, что мы живем на трехмерной бране, плавающей в многомерном пространстве. Знакомые нам частицы, такие как электроны и кварки, представляются тогда открытыми струнами, концы которых присоединены к нашей бране.

136

В значительной мере благодаря работам Полчински стало ясно, что теория струн должна включать браны разной размерности.

137

Формируются также и пузырьки с более высокой энергией, хотя вероятность этого намного ниже.

138

Пространственно-временная структура расширяющихся пузырьков напоминает островные вселенные, описанные в главе 10. Пузырьки конечны, когда рассматриваются снаружи, но изнутри каждый пузырек выглядит самодостаточной бесконечной вселенной. Вечная инфляция с пузырьками островных вселенных упомянута Ричардом Готтом в 1982 году, а более реалистичная ее модель обсуждалась в 1983 году Полом Стейнхардтом.

139

Цит. по статье Davide Castelvecchi, "The growth of inflation" ("Рост инфляции"), Free Republic, December 2004.

140

Речь об известной фразе Черчилля: "Никогда не сдавайтесь — никогда, никогда, никогда, никогда..." ("Never give in — never, never, never, never..."). — Примеч. перев.

141

Эдвард Виттен (Edward Witten) — один из ведущих специалистов по теории струн, награжденный в 1990 году Филдсовской медалью — эквивалентом Нобелевской премии для математиков.

142

Интервью с Джоном Брокманом (John Brockman), Edge, 2003.

143

Интервью с Джоном Брокманом (John Brockman), Edge, 2003.

144

Интересные параллели между древними мифами и современной космологией обсуждаются в книге Марчело Глизера "Танцующая Вселенная: от мифов о творении до Большого взрыва" (Marcelo Gleiser, The Dancing Universe: From Creation Myths to the Big Bang, Dutton, New York, 1997).

145

Эта же критика применима к идее Вселенной, рождающейся из хаоса, как в модели хаотической инфляции. Этот момент обыгрывается в "шутке", приводимой в книге Тимоти Ферриса "Целая история" (Timothy Ferris, The Whole Shebang, Simon & Schuster, New York, 1997). Атеист заявляет, что мир появился из хаоса, на что верующий отвечает: "Но кто же навел этот хаос?"

146

Для реализации этого сценария Стейнхардт и Турок ввели скалярное поле с тщательно подобранным энергетическим ландшафтом. Космологи обычно скептически относятся к их модели, поскольку этот ландшафт выглядит довольно искусственно. Кроме того, значение плотности энергии вакуума, которое играет ключевую роль в этой модели, просто устанавливается "руками" без всякого объяснения, почему оно столь мало или почему оно доминирует во Вселенной в эпоху формирования галактик.

147

Минимальный радиус деситтеровской сферы примерно равен расстоянию, которое проходит свет за один период инфляционного удвоения.

148

Существование такого класса наблюдателей может считаться определением расширяющейся вселенной.

149

Этот метод доказательства неполноты пространства-времени путем демонстрации того, что определенные истории имеют конечную длительность в прошлом или будущем, восходит к работам Хокинга и Пенроуза 1960-70-х годов.

150

Один из способов обойти вывод данной теоремы — допустить, что по мере движения назад во времени темп расширения все замедляется и замедляется и в бесконечном прошлом вселенная становится статической. Но тогда вселенная должна была бы оставаться статической в течение бесконечного времени и достигла бы термодинамического равновесия.

151

Другая интересная попытка избавиться от начала Вселенной предпринята в 1998 году в статье принстонских ученых Дж. Ричарда Готта и Ли-Синь Ли "Может ли Вселенная создать саму себя?" С- Richard Gott, Li-Xin Li, "Can the universe create, itself?", Physical Review D, vol. 58, p. 023501.) Готт и Ли предположили, что при движении в прошлое мы попадаем во временную петлю, прокручивая снова и снова одни и те же события. Эйнштейновская теория относительности действительно в принципе допускает существование временных петель. (Увлекательное обсуждение этого см. в отличной книге Ричарда Готта "Путешествия во времени в эйнштейновской вселенной".) Однако, как отмечают сами Готт и Ли, вдобавок к историям, закрученным в петлю, придуманное ими пространство-время с необходимостью содержит некоторые неполные истории, подобные истории космического путешественника, обсуждаемой в основном тексте. Это означает, что само пространство-время неполно в прошлом, а значит, не обеспечивает удовлетворительной модели для вселенной, не имеющей начала.

152

A. Borde, A.H. Guth, A. Vilenkin, "Inflationary spacetimes are not past complete" ("Инфляционное пространство-время не является полным в прошлом"), Physical Review Letters, vol. 90, p. 151301 (2003).

153

E.A. Milne, Modern Cosmology and the Christian Idea of God ("Современная космология и христианская идея Бога"), Clarendon, Oxford, 1952.

154

Pope Pius XII, Address to the Pontifical Academy of Sciences, November 1951; перевод на англ. в P.J. McLaughlin, The Church and Modern Science ("Церковь и современная наука"), Philosophical Library, New York (1957). He все духовенство разделяло энтузиазм папы. В частности, Жорж Леметр, который был одновременно католическим священником и знаменитым космологом, считал, что религия должна ограничиться духовным миром, оставив материальный науке. Леметр даже пытался отговорить папу от одобрения Большого взрыва. Похоже, что позднее папа изменил свое мнение. Ни он сам, ни его последователи больше не предпринимали попыток прямой научной верификации религии.

155

A. Vilenkin, "Creation of universes from nothing" ("Создание вселенных из ничего"), Physics Letters, vol. 117B, p. 25,1982. Позднее я узнал, что возможность спонтанного зарождения Вселенной из ничего обсуждалась примерно годом раньше Леонидом Грищуком и Яковом Зельдовичем в Московском государственном университете. Однако они не предложили никакого математического описания процесса зарождения.

156

Примерно в то же время идею, очень похожую на трайоновскую, высказал Петр Фомин из Харьковского государственного университета на Украине. Фактически последовательность шагов, показанная на рис. 17.3, не была четко изложена Трайоном и впервые появилась именно в статье Фомина. К сожалению, Фомин не смог найти журнал, который опубликовал бы его работу. В итоге он напечатал ее в малоизвестном украинском физическом журнале.

157

Е.P. Tryon, "Is the universe a vacuum fluctuation?" ("Является ли Вселенная вакуумной флуктуацией?"), Nature, vol. 246, p. 396,1973. В конце 1970-х и начале 1980-х было предпринято несколько попыток разработки математических моделей квантового творения из вакуума. Ричард Броут (Richard Brout), Франсуа Энглер (Francois Englert) и Эдгар Гунциг (Edgard Gunzig) из Брюссельского университета предположили в 1978 году, что в вакууме может спонтанно возникнуть сверхтяжелая частица с массой в 10>20 раз больше, чем у протона. Такая частица искривила бы пространство, растущая кривизна запустила дальнейшее рождение частиц, и процесс стал бы распространяться все дальше и дальше, как расширяющийся пузырь. Внутри пузыря тяжелые частицы будут быстро распадаться на более легкие и излучение, заполняя материей расширяющуюся вселенную. Эта модель сталкивается с той же проблемой, что и сценарий Трайона: в действительности она не объясняет происхождение Вселенной. Если пустое плоское пространство действительно настолько неустойчиво, оно быстро заполнилось бы растущими пузырями. Такое нестабильное пространство не могло бы существовать вечно, а значит, не могло бы служить начальной точкой творения.

158

Дэвид Аткац (David Atkatz) и Хайнц Пейджелс (Heinz Pagels) из Рокфеллеровского университета в статье, написанной в 1982 году, предположили, что перед Большим взрывом Вселенная существовала в форме своеобразного "космического яйца" — маленького сферического пространства, заполненного необычной высокоэнергичной материей. Они построили модель, в которой "яйцо" было классически стабильным, но могло туннелировать в состояние с большим радиусом и расшириться. (Насколько я знаю, это было первое упоминание о квантовом туннелировании вселенной как целого.) И вновь проблема в том, что нестабильное "яйцо" не могло существовать вечно, следовательно, оставалась проблема, откуда оно взялось.

159

А.Н. Guth, The Inflationary Universe ("Инфляционная Вселенная"), Addison-Wesley, Reading, 1997, p. 273.

160

St. Augustine, Confessions (Святой Августин, "Исповедь"), Sheed and Ward, NY, 1948.

161

A. Vilenkin, "Quantum origin of the universe" ("Квантовое происхождение Вселенной"), Nuclear Physics, vol. B252, p. 141,1985.

162

Я благодарен Эрнану Макмаллину (Ernan McMullin) который обратил мое внимание на важность требования, что вселенные ансамбля должны существовать реально, а не быть только возможными вселенными.

163

J.В. Hartle, S.W. Hawking, "The wave function of the universe" ("Волновая функция Вселенной"), Physical Review, vol. D28, p. 2960,1983. Хокинг наметил основную идею этой работы примерно годом раньше в сб. "Астрофизическая космология: доклады недели космологии и фундаментальной физики" (Astrophysical Cosmology: Proceedings of the Study Week on Cosmology and Fundamental Physics, edited by H.A. Bruck, G.V. Coyne, and M.S. Longair, Pontifica Academia, Vatican, 1982), но тогда он не раскрыл никаких математических подробностей.

164

Точнее, путем суммирования вкладов различных историй определяется величина, называемая волновой функцией. Вероятность данного состояния равна квадрату волновой функции.

165

Познакомиться с предположением об отсутствии границ можно в бестселлере Хокинга "Краткая история времени", Амфора, 2003. (Hawking S., A Brief History of Time, Bantam, New York, 1988, p. 136). (О современном состоянии этих идей рассказывается в новой научно-популярной книге Хокинга "Мир в ореховой скорлупке", Амфора, 2007. — Примеч. перев.).

166

Ошибку в моей первоначальной статье независимо заметили и исправили Андрей Линде, Валерий Рубаков, а также Яков Зельдович с Алексеем Старобинским.

167

На следующий день у Хокинга было другое важное дело: он поехал в Голливуд, чтобы записать свой электронный голос для специального эпизода сериала "Симпсоны".

168

Следует сделать оговорку, что ландшафт теории струн состоит из нескольких не связанных доменов и пузыри из одного домена не могут зарождаться в другом. В таком случае пузыри, возникающие в ходе бесконечной инфляции, будут содержать только вакуумы, принадлежащие тому же домену, что и первоначальный вакуум, заполнявший вселенную в момент ее возникновения. В этом случае природа мультиверса будет зависеть от начального состояния, и проверка квантовой космологии становится принципиально возможной.

169

Физические процессы в отдаленном будущем Вселенной среди про чих анализировали Мартин Рис и Дон Пейдж (Don Page). Популярный обзор дан в книге Пола Дэвиса "Последние три минуты: догадки о конечной судьбе Вселенной" (Paul Davies, The last three minutes: conjectures about the ultimate fate of the universe, Basic Books, New York, 1994)

170

Этот сценарий основан на анализе К. Нейджамайна и А. Лоэба в статье "Будущая эволюция окружающей крупномасштабной структуры во Вселенной с доминирующей космологической постоянной" (Nagamine К., Loeb A., "Future evolution of nearby large-scale structure in a universe dominated by a cosmological constant", New Astronomy, vol. 8, p. 439, 2003).

171

Предсказание о том, что местная область Вселенной подвергнется коллапсу и большому сжатию, сделано в статье "Проверяемые антропные предсказания для темной энергии", написанной мною с Хауме Гарригой ("Testable anthropic predictions for dark energy", Physical Review, vol. D67, p. 043503, 2003). Мы отмечали, однако, что это предсказание вряд ли удастся проверить в обозримое время.

172

Alan L Mackay, A Dictionary of Scientific Quotations ("Словарь научных цитат"). Institute of Physics Publishing, Bristol, 1991.

173

Подобная ситуация, когда бесконечный ансамбль оказывается много проще отдельного члена, очень часто встречается в математике. Рассмотрим, например, множество всех целых чисел: 1, 2, 3, ... Его можно сгенерировать простой компьютерной программой, занимающей всего несколько строк. С другой стороны, число битов, необходимых для записи конкретного большого целого числа, равно количеству цифр в его двоичной записи и может оказаться гораздо больше.

174

P.A.M. Dirac, "The evolution of the physicist's picture of nature" ("Эволюция физической картины мира"), Scientific American, May 1963.

175

Интересную дискуссию о красоте научных теорий можно найти в книге Марис Ливио "Ускоряющаяся Вселенная: бесконечное расширение, космологическая константа и красота космоса" (Mario Livio, The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos, Wiley, New York, 2000).

176

M. Tegmark, "Parallel universes" ("Параллельные вселенные"), Scientific American, May 2003.

177

Тегмарк не делает различии между математическими структурами и вселенными, которые они описывают. Он полагает, что математические уравнения описывают все аспекты физического мира, так что каждый физический объект отвечает определенной сущности платоновского мира математических структур и наоборот. В этом смысле два мира эквивалентны друг другу, и, согласно Тегмарку, наша собственная Вселенная есть математическая структура.

178

Чтобы справиться с этой проблемой, Тегмарк предполагает, что не все математические структуры равноценны; им можно назначить разные "веса". Если веса быстро убывают с нарастанием сложности, то наиболее вероятными могут оказаться простейшие структуры, которые все же способны содержать наблюдателей. Это введение весов может разрешить проблему сложности, но тогда мы встаем перед вопросом: кто определяет веса? Должны ли мы вернуть из изгнания Творца? Или нам следует еще больше расширить ансамбль, чтобы включить все возможные назначения весов? Я даже не уверен, что представление о весах на множестве всех математических структур логически не противоречиво: оно похоже на введение дополнительной математической структуры, но все они, как предполагается, уже включены в рассматриваемое множество.

179

В зависимости от фундаментальной теории константы могут меняться и внутри отдельной островной вселенной. Наша собственная островная вселенная будет тогда по большей части пустынной с редкими обитаемыми анклавами.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.