Мир многих миров: Физики в поисках иных вселенных - [8]

Шрифт
Интервал

Для большинства физиков это было чересчур. Такой одномоментный старт Вселенной выглядел как божественное вмешательство, которому, по их мнению, не должно быть места в физической теории. Но хотя для многих ученых "начало мира" было — и в большой мере остается — источником дискомфорта, оно дает и некоторые преимущества. Оно помогает избавиться от возмутительных парадоксов, которыми полна картина статической, вечной и неизменной Вселенной.

Для начала, вечность Вселенной, по-видимому, противоречит одному из самых фундаментальных законов природы — второму началу термодинамики. Этот закон гласит, что физические системы эволюционируют от более упорядоченных состояний к менее упорядоченным. Если тщательно разложить бумаги по стопкам на столе, и в окно неожиданно дунет порыв ветра, листы будут беспорядочно разбросаны по полу. Но вы никогда не увидите, чтобы ветер поднял бумаги с пола и сложил их аккуратными стопками на столе. Такое спонтанное уменьшение беспорядка не является принципиально невозможным, но оно настолько маловероятно, что увидеть подобное никогда не удается.

Математически степень беспорядка характеризуется величиной, называемой энтропией, а второе начало термодинамики говорит, что энтропия изолированной системы может только возрастать. Неуклонное возрастание беспорядка ведет в конце концов к состоянию максимально возможной энтропии, которое называется тепловым равновесием. В этом состоянии вся энергия упорядоченного движения превращается в тепло, и по всей системе устанавливается одинаковая температура.

На космические следствия второго начала термодинамики впервые указал немецкий физик Герман фон Гельмгольц в середине XIX века. Он отметил, что вся Вселенная может рассматриваться как изолированная система (поскольку по отношению к Вселенной не существует ничего внешнего). А раз так, то к вселенной как к целому применимо второе начало термодинамики, и она должна неотвратимо приближаться к "тепловой смерти" — состоянию термодинамического равновесия. В этом состоянии звезды умрут и будут иметь одинаковую температуру с окружающей средой, а все движения, кроме беспорядочной тепловой толкотни молекул, остановятся.

Еще одно следствие второго начала термодинамики состоит в том, что если Вселенная вечна, то она должна была уже достичь термодинамического равновесия. И раз мы не находимся в состоянии максимальной энтропии, значит, Вселенная не могла существовать всегда.[13]

Гельмгольц не акцентировал этот второй вывод, а больше говорил о той части, которая касалась "смерти" (надо сказать, что такие настроения во многом поддерживались апокалиптической прозой конца XIX — начала XX века). Однако другие физики, в том числе такие титаны, как Людвиг Больцман[14], хорошо понимали эту проблему. Больцман видел выход в статистической природе второго начала. Даже если Вселенная действительно находится в состоянии максимального беспорядка, он может неожиданно чисто случайно уменьшиться. Такие события, называемые тепловыми флуктуациями, достаточно обычны в масштабе нескольких сотен молекул, но становятся все более невероятными по мере увеличения масштабов. Больцман предположил, что все наблюдаемое вокруг нас — это гигантская тепловая флуктуация в совершенно беспорядочной Вселенной. Вероятность возникновения такой флуктуации невыразимо мала. Однако даже невероятные вещи иногда случаются, если ждать достаточно долго, и они обязательно произойдут, если у вас в распоряжении бесконечное количество времени. Жизнь и наблюдатели могут существовать только в упорядоченных частях Вселенной, и это объясняет, почему нам повезло наблюдать столь неправдоподобно редкое событие[15].

 Трудность больцмановского решения состоит в том, что упорядоченная часть Вселенной выглядит чрезмерно большой. Для существования наблюдателя хватило бы превращения хаоса в порядок на масштабах, близких к размерам Солнечной системы. Это было бы намного более вероятно, чем флуктуация размером в миллиарды световых лет, необходимая для существования наблюдаемой нами Вселенной.

Другая проблема, имеющая более длинную предысторию, возникает, если предположить, что Вселенная бесконечна, а звезды более или менее однородно распределены по всему ее пространству. В этом случае, в каком бы направлении мы ни взглянули на небо, луч зрения в конце концов неизбежно должен упираться в звезду. А значит, все небо должно постоянно и ослепительно светиться. Встает простой вопрос: почему ночью темно? Иоганн Кеплер в 1610 году первым обратил внимание на эту проблему и пришел к заключению, что Вселенная не может быть бесконечной.

Как проблема энтропии, так и парадокс ночного неба естественным образом разрешаются, если возраст Вселенной конечен. Если она возникла лишь определенное время назад и изначально пребывала в высокоупорядоченном состоянии (с низкой энтропией), тогда сегодня мы наблюдаем деградацию от этого состояния к хаосу и не должны удивляться, что состояние максимальной энтропии еще не достигнуто. Парадокс ночного неба разрешается, поскольку во Вселенной конечного возраста свету очень далеких звезд еще не хватило времени, чтобы дойти до нас. Мы можем наблюдать лишь звезды, находящиеся в пределах радиуса


Рекомендуем почитать
186 суток на орбите (спросите у космонавта)

Тим Пик увлекается марафонским бегом, альпинизмом и лыжным спортом, воспитывает сына и ходит в спелеологичес кие походы в Западном Суссексе. А еще Тим прошел отбор в программу Европейского космического агентства (EKA). На шесть мест для полетов в открытый космос претендовало более 8000 участников… А сегодня Тим Пик – единственный космонавт во всей Великобритании. 15 декабря 2015 года в 14:03 Тим Пик в должности второго борт инженера отправился с космодрома Байконур к МКС, чтобы провести на орбите 186 суток и узнать все о том, как жить и выживать в космосе. Что чувствовал Тим, вращаясь вокруг Земли быстрее, чем ускоряющаяся пуля? Каково это есть, спать и вообще жить в космосе? Что делать, когда нечего делать? Как вообще обстоят дела в современном космосе? Вернувшись домой, Тим решил поделиться всем пережитым с землянами.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


100 миллиардов солнц: Рождение, жизнь и смерть звезд

Книга астронома из ФРГ посвящена изложению современных взглядов на свойства, строение, происхождение и эволюцию звезд. Не применяя математики и сложной терминологии, автор просто и наглядно объясняет все основные результаты теории звезд, начиная с ее классических разделов и кончая самыми современными данными о пульсарах, рентгеновских звездах и черных дырах.


Пилотируемые полеты на Луну

Выпуск Итоги науки и техники из серии Ракетостроение, том 3, «Пилотируемые полеты на Луну, конструкция и характеристики Saturn V Apollo» является обзором и систематизацией работ, информация о которых опубликована в изданиях ВИНИТИ АН СССР в 1969—1972 гг. В томе 3 описываются конструкция, весовые, летные характеристики и космические летные испытания ракеты-носителя Saturn V и корабля Apollo. Рассматриваются системы управления корабля Apollo, принципы прицеливания траектории полета Земля-Луна-Земля, навигация, коррекция траектории полета, методы аварийного возвращения.