Металлы в живых организмах - [34]

Шрифт
Интервал

АТФ отдает энергию, способствуя образованию химически активного соединения углевода рибулозы — рибулозодифосфата (содержащего пять атомов углерода). Рибулозодифосфат, реагируя с диоксидом углерода, поступающего из внешней среды, превращается сначала в шестиуглеродное соединение, которое затем распадается на два трехуглеродных фрагмента — 3-фосфоглицерата:

Рибулозодифосфат, реагируя с диоксидом углерода, поступающего из внешней среды, превращается сначала в шестиуглеродное соединение, которое затем распадается на два трехуглеродных фрагмента — 3-фосфоглицерата

Это соединение превращается с помощью НАДФ*Н в диоксиацетонфосфат, который является сырьем для синтеза фосфатов фруктозы, глюкозы и затем крахмала.

Синтез только 2 моль диоксиацетонфосфата, из которых образуется одна молекула глюкозы, требует, чтобы в фотохимической системе было произведено 12 моль НАДФ*Н и 18 моль АТФ. Следующие стадии синтеза глюкозы нуждаются в дополнительных количествах НАДФ*Н и АТФ.

Таким образом, образующиеся при фотосинтезе глюкоза и крахмал аккумулируют ту энергию, которую кванты света передали хлорофиллу на первых стадиях фотосинтеза.

В современной науке моделирование фотосинтеза — искусственное создание такой химической системы, которая могла бы, поглощая свет, доставлять нам углеводы, синтезируя их из воды и диоксида углерода, — является одной из самых увлекательных задач. Физики умеют превращать энергию света в электрическую энергию. Остается заставить поток электронов служить химическим целям с таким же совершенством, с каким это происходит в природе.

Для фотосинтеза нужен не только хлорофилл, но и особые мембранные структуры, содержащие белок и ряд ферментов в соответствующем пространственном расположении. Только до тех пор, пока все части этой сложной системы работают согласованно, идет процесс образования органических веществ, запасающих энергию света. В связи с этим познание фотосинтеза оказалось не только химической, но и физической проблемой и потребовало решения многих вопросов, в частности вопроса о передаче энергии возбуждения. Выяснилось, что структуры, необходимые для фотосинтеза, похожи на митохондрии: в зеленых растениях это хлоропласта, у микроорганизмов, многие виды которых способны к фотосинтезу (сине-зеленые, пурпурные бактерии и др.), все необходимые ферменты размещены в клеточной мембране, а мембрана впячивается внутрь клетки, образуя мезосомы.

Эти важные факты говорят о том, что структурная организация: возникновение надмолекулярных структур — митохондрий, хлоропластов — есть необходимое условие сопряжения реакций, доставляющих энергию, и реакций, поглощающих ее. Так в природе осуществляется переход от процессов на молекулярном уровне к процессам в макромолекулярных организациях — клетках и многоклеточных системах, причем и само существование таких систем поддерживается энергетическим сопряжением.

Все эти структуры образовались постепенно, и хлорофилл не сразу появился на Земле.

В осадочных породах, начиная с кембрийского, были обнаружены порфирины, и, как думают ученые, именно они являются остатками древних носителей хлорофилла. Некоторые ученые считают, что хлорофилл совершает свою работу в живых системах вот уже 550 млн. лет.

Хлорофилл и сам был рожден светом. Возможно, как считает М. Кальвин, солнечная радиация, действуя на воду и углекислый газ, привела сначала к появлению муравьиной и щавелевой кислот. Щавелевая кислота Н>2С>2О>4 содержит два атома углерода. При облучении таких двухуглеродных молекул часто образуются четырехуглеродные молекулы; в частности, четыре атома углерода содержатся в кислоте С>4Н>6O>4, называемой янтарной. С другой стороны, прямыми опытами Бахадура, А. Г. Пасынского с сотрудниками и других ученых доказано, что ультрафиолетовая радиация, действуя на растворы нитратов и формальдегида, в которых содержатся соли железа, вызывает появление в растворах аминокислот; аминокислоты могут возникнуть и при действии электрических разрядов на смесь азота, углекислого газа и паров воды. Из янтарной кислоты и аминокислоты глицина, NH>2CH>2COOH, по-видимому, и образовались порфирины.

Они и были (по А. А. Красновскому) первичными аппаратами для использования энергии света. У наиболее древних видов бактерий — автотрофов — обнаружено наличие свободных порфиринов. Бактерии действовали в лишенной кислорода восстановительной атмосфере, которая была характерна для ранних периодов истории Земли, и содержали восстановленную форму порфирина. Однако свободные порфирины, в силу особенностей их спектра поглощения, не могут обеспечить достаточно полного использования видимой части солнечного излучения. Постепенно химическая эволюция усовершенствовала аппарат и привела к образованию хлорофилла; внедрение магния в структуру порфирина вызвало повышение активности, и, кроме того, магний укрепил связи хлорофилла с белком[8].

Фотосинтез в той его форме, которая приобрела особенно большое значение на Земле, совершается в зеленых частях растений и в водорослях. Трудно представить колоссальные масштабы деятельности зеленых водорослей, плавающих в морях и океанах. За один год они выделяют в атмосферу Земли 3,6*10 т кислорода. Это составляет около 90% всего кислорода, поступающего в атмосферу из океана и с поверхности листьев наземных растений. Следовательно, именно водоросли являются основным поставщиком кислорода. Именно они создают ту часть атмосферы, которая необходима для нашего существования. Наша жизнь неразрывно связана с "дыханием океана" и непрерывной деятельностью микроскопических носителей хлорофилла. К. А. Тимирязев в книге "Солнце, жизнь и хлорофилл" изложил результаты своих фундаментальных исследований в области фотосинтеза и указал, что фотосинтез — это процесс, от которого зависят все проявления жизни на нашей планете.


Рекомендуем почитать
Нейромифология. Что мы действительно знаем о мозге и чего мы не знаем о нем

Все занимаются исследованиями мозга. Едва ли найдется научная дисциплина, которая откажется «модернизировать» себя, добавив «нейро» к названию. Детища этого стремления – нейротеология, нейроэкономика, нейроправо и нейроэстетика. Жертва его – наш мир, который пытаются представить в категориях из области исследований мозга. Я – это мой мозг? Или только биоавтомат? Эта книга ставит под сомнение значимость нейроисследований. Нить доказательств автора ведет к постулату: дидактический апломб нейронаук непропорционален их фактической познавательной способности; громкие прогнозы и теории балансируют на весьма тонкой основе надежных эмпирических данных, и только разрастающаяся масса вольно истрактованных результатов не дает им рухнуть.


Те, кто делает нас лучше

В этой потрясающей, поэтической и жизнеутверждающей книге финалистка Национальной книжной премии США Сай Монтгомери рассказывает о 13 животных – ее друзьях, сыгравших важную роль в ее жизни.      Каждое животное замечательно, и совершенно по-своему. Просто находиться рядом с любым животным – это уже урок, потому что все они умеют что-то, чего не могут люди. Общение с созданиями, принадлежащими к другим видам, удивительным образом обогащает душу. Никто не знает этого лучше, чем автор, натуралист и искатель приключений Сай Монтгомери.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Жуткая биология для безнадежных гуманитариев. Вампировые летучие мыши, пиявки и прочие кровососущие

Билл Шутт – бывший профессор биологии в LIU-Post и научный сотрудник в Американском музее естествознания. Мир кровожадных животных, который открывает Билл Шутт, отправит вас в омерзительно-увлекательное путешествие, где вампировые летучие мыши, пиявки и прочие кровососущие станут главными героями почти детективных историй. Это одновременно самая пугающая и забавная книга о биологии и истории. Вряд ли вы где-нибудь еще прочтете такой подробный рассказ о жизни кровожадных животных и насекомых.


Сафари по коже. Удивительная жизнь органа, который у всех на виду

Кожа человека – удивительный орган, один из немногих, которые мы можем увидеть и тем более потрогать. Но несмотря на кажущуюся доступность, знаем мы о ней еще очень мало. Например, каким было отношение к коже в XVIII, XIX, XX веках и какое оно в современном мире, почему у одних народов принято прятать кожу под слоями одежды, а другие носят лишь набедренные повязки. Вместе с Монти Лиманом, врачом-дерматологом, вы погрузитесь в мир кожи, узнаете ее устройство и скрытые физиологические процессы, разберетесь в механизмах старения и волшебстве касаний, познакомитесь с населением кожи – микробиомом, узнаете о заболеваниях и способах лечения, а также разберетесь, как кожа связана с нашим мозгом и сознанием, узнаете больше о ее социальной и духовной стороне.


Я или не я

Академик АМН СССР рассказывает об иммунитете, силах, которые защищают наш организм от микробов, вирусов, раковых заболеваний, хранят неповторимую индивидуальность нашего телесного 'я', говорит о болезнях, возникающих при нарушении иммунитета и мерах борьбы с ними, а также об использовании клеток иммунной системы в биотехнологии (производстве лечебных и диагностических препаратов, сверхчувствительных реагентов), об использовании 'раковых клеток в мирных целях'. Издание рассчитано на самые широкие круги читателей.